ترغب بنشر مسار تعليمي؟ اضغط هنا

Learnings from Technological Interventions in a Low Resource Language: A Case-Study on Gondi

71   0   0.0 ( 0 )
 نشر من قبل Sebastin Santy
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The primary obstacle to developing technologies for low-resource languages is the lack of usable data. In this paper, we report the adoption and deployment of 4 technology-driven methods of data collection for Gondi, a low-resource vulnerable language spoken by around 2.3 million tribal people in south and central India. In the process of data collection, we also help in its revival by expanding access to information in Gondi through the creation of linguistic resources that can be used by the community, such as a dictionary, childrens stories, an app with Gondi content from multiple sources and an Interactive Voice Response (IVR) based mass awareness platform. At the end of these interventions, we collected a little less than 12,000 translated words and/or sentences and identified more than 650 community members whose help can be solicited for future translation efforts. The larger goal of the project is collecting enough data in Gondi to build and deploy viable language technologies like machine translation and speech to text systems that can help take the language onto the internet.



قيم البحث

اقرأ أيضاً

In this paper, we examine and analyze the challenges associated with developing and introducing language technologies to low-resource language communities. While doing so, we bring to light the successes and failures of past work in this area, challe nges being faced in doing so, and what they have achieved. Throughout this paper, we take a problem-facing approach and describe essential factors which the success of such technologies hinges upon. We present the various aspects in a manner which clarify and lay out the different tasks involved, which can aid organizations looking to make an impact in this area. We take the example of Gondi, an extremely-low resource Indian language, to reinforce and complement our discussion.
Deep neural networks and huge language models are becoming omnipresent in natural language applications. As they are known for requiring large amounts of training data, there is a growing body of work to improve the performance in low-resource settin gs. Motivated by the recent fundamental changes towards neural models and the popular pre-train and fine-tune paradigm, we survey promising approaches for low-resource natural language processing. After a discussion about the different dimensions of data availability, we give a structured overview of methods that enable learning when training data is sparse. This includes mechanisms to create additional labeled data like data augmentation and distant supervision as well as transfer learning settings that reduce the need for target supervision. A goal of our survey is to explain how these methods differ in their requirements as understanding them is essential for choosing a technique suited for a specific low-resource setting. Further key aspects of this work are to highlight open issues and to outline promising directions for future research.
Neural dependency parsing has achieved remarkable performance for many domains and languages. The bottleneck of massive labeled data limits the effectiveness of these approaches for low resource languages. In this work, we focus on dependency parsing for morphological rich languages (MRLs) in a low-resource setting. Although morphological information is essential for the dependency parsing task, the morphological disambiguation and lack of powerful analyzers pose challenges to get this information for MRLs. To address these challenges, we propose simple auxiliary tasks for pretraining. We perform experiments on 10 MRLs in low-resource settings to measure the efficacy of our proposed pretraining method and observe an average absolute gain of 2 points (UAS) and 3.6 points (LAS). Code and data available at: https://github.com/jivnesh/LCM
Recent research in multilingual language models (LM) has demonstrated their ability to effectively handle multiple languages in a single model. This holds promise for low web-resource languages (LRL) as multilingual models can enable transfer of supe rvision from high resource languages to LRLs. However, incorporating a new language in an LM still remains a challenge, particularly for languages with limited corpora and in unseen scripts. In this paper we argue that relatedness among languages in a language family may be exploited to overcome some of the corpora limitations of LRLs, and propose RelateLM. We focus on Indian languages, and exploit relatedness along two dimensions: (1) script (since many Indic scripts originated from the Brahmic script), and (2) sentence structure. RelateLM uses transliteration to convert the unseen script of limited LRL text into the script of a Related Prominent Language (RPL) (Hindi in our case). While exploiting similar sentence structures, RelateLM utilizes readily available bilingual dictionaries to pseudo translate RPL text into LRL corpora. Experiments on multiple real-world benchmark datasets provide validation to our hypothesis that using a related language as pivot, along with transliteration and pseudo translation based data augmentation, can be an effective way to adapt LMs for LRLs, rather than direct training or pivoting through English.
As modern deep networks become more complex, and get closer to human-like capabilities in certain domains, the question arises of how the representations and decision rules they learn compare to the ones in humans. In this work, we study representati ons of sentences in one such artificial system for natural language processing. We first present a diagnostic test dataset to examine the degree of abstract composable structure represented. Analyzing performance on these diagnostic tests indicates a lack of systematicity in the representations and decision rules, and reveals a set of heuristic strategies. We then investigate the effect of the training distribution on learning these heuristic strategies, and study changes in these representations with various augmentations to the training set. Our results reveal parallels to the analogous representations in people. We find that these systems can learn abstract rules and generalize them to new contexts under certain circumstances -- similar to human zero-shot reasoning. However, we also note some shortcomings in this generalization behavior -- similar to human judgment errors like belief bias. Studying these parallels suggests new ways to understand psychological phenomena in humans as well as informs best strategies for building artificial intelligence with human-like language understanding.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا