ﻻ يوجد ملخص باللغة العربية
Neural dependency parsing has achieved remarkable performance for many domains and languages. The bottleneck of massive labeled data limits the effectiveness of these approaches for low resource languages. In this work, we focus on dependency parsing for morphological rich languages (MRLs) in a low-resource setting. Although morphological information is essential for the dependency parsing task, the morphological disambiguation and lack of powerful analyzers pose challenges to get this information for MRLs. To address these challenges, we propose simple auxiliary tasks for pretraining. We perform experiments on 10 MRLs in low-resource settings to measure the efficacy of our proposed pretraining method and observe an average absolute gain of 2 points (UAS) and 3.6 points (LAS). Code and data available at: https://github.com/jivnesh/LCM
Parsers are available for only a handful of the worlds languages, since they require lots of training data. How far can we get with just a small amount of training data? We systematically compare a set of simple strategies for improving low-resource
Detection of some types of toxic language is hampered by extreme scarcity of labeled training data. Data augmentation - generating new synthetic data from a labeled seed dataset - can help. The efficacy of data augmentation on toxic language classifi
The primary obstacle to developing technologies for low-resource languages is the lack of usable data. In this paper, we report the adoption and deployment of 4 technology-driven methods of data collection for Gondi, a low-resource vulnerable languag
Out-of-vocabulary (OOV) words can pose serious challenges for machine translation (MT) tasks, and in particular, for low-resource language (LRL) pairs, i.e., language pairs for which few or no parallel corpora exist. Our work adapts variants of seq2s
This paper describes how to verify a parser for regular expressions in a functional programming language using predicate transformer semantics for a variety of effects. Where our previous work in this area focused on the semantics for a single effect