ﻻ يوجد ملخص باللغة العربية
Following the work of Burger, Iozzi and Wienhard for representations, in this paper we introduce the notion of maximal measurable cocycles of a surface group. More precisely, let $mathbf{G}$ be a semisimple algebraic $mathbb{R}$-group such that $G=mathbf{G}(mathbb{R})^circ$ is of Hermitian type. If $Gamma leq L$ is a torsion-free lattice of a finite connected covering of $text{PU}(1,1)$, given a standard Borel probability $Gamma$-space $(Omega,mu_Omega)$, we introduce the notion of Toledo invariant for a measurable cocycle $sigma:Gamma times Omega rightarrow G$. The Toledo remains unchanged along $G$-cohomology classes and its absolute value is bounded by the rank of $G$. This allows to define maximal measurable cocycles. We show that the algebraic hull $mathbf{H}$ of a maximal cocycle $sigma$ is reductive and the centralizer of $H=mathbf{H}(mathbb{R})^circ$ is compact. If additionally $sigma$ admits a boundary map, then $H$ is of tube type and $sigma$ is cohomologous to a cocycle stabilizing a unique maximal tube-type subdomain. This result is analogous to the one obtained for representations. In the particular case $G=text{PU}(n,1)$ maximality is sufficient to prove that $sigma$ is cohomologous to a cocycle preserving a complex geodesic. We conclude with some remarks about boundary maps of maximal Zariski dense cocycles.
Let $G$ a semisimple Lie group of non-compact type and let $mathcal{X}_G$ be the Riemannian symmetric space associated to it. Suppose $mathcal{X}_G$ has dimension $n$ and it has no factor isometric to either $mathbb{H}^2$ or $text{SL}(3,mathbb{R})/te
Let $Gamma$ be a torsion-free lattice of $text{PU}(p,1)$ with $p geq 2$ and let $(X,mu_X)$ be an ergodic standard Borel probability $Gamma$-space. We prove that any maximal Zariski dense measurable cocycle $sigma: Gamma times X longrightarrow text{SU
Multiplicative constants are a fundamental tool in the study of maximal representations. In this paper we show how to extend such notion, and the associated framework, to measurable cocycles theory. As an application of this approach, we define and s
Given $Gamma < text{PU}(n,1)$ a torsion-free lattice and $(X,mu_X)$ a standard Borel $Gamma$-space, we introduce the notion of Toledo invariant of a measurable cocycle $sigma:Gamma times X rightarrow text{PU}(p,infty)$. Since that invariant has bound
We generalize the theory of the second invariant cohomology group $H^2_{rm inv}(G)$ for finite groups $G$, developed in [Da2,Da3,GK], to the case of affine algebraic groups $G$, using the methods of [EG1,EG2,G]. In particular, we show that for connec