ﻻ يوجد ملخص باللغة العربية
Let $Gamma$ be a torsion-free lattice of $text{PU}(p,1)$ with $p geq 2$ and let $(X,mu_X)$ be an ergodic standard Borel probability $Gamma$-space. We prove that any maximal Zariski dense measurable cocycle $sigma: Gamma times X longrightarrow text{SU}(m,n)$ is cohomologous to a cocycle associated to a representation of $text{PU}(p,1)$ into $text{SU}(m,n)$, with $1 < m leq n$. The proof follows the line of Zimmer Superrigidity Theorem and requires the existence of a boundary map, that we prove in a much more general setting. As a consequence of our result, it cannot exist a maximal measurable cocycle with the above properties when $n eq m$.
Given $Gamma < text{PU}(n,1)$ a torsion-free lattice and $(X,mu_X)$ a standard Borel $Gamma$-space, we introduce the notion of Toledo invariant of a measurable cocycle $sigma:Gamma times X rightarrow text{PU}(p,infty)$. Since that invariant has bound
Let $text{G}(n)$ be equal either to $text{PO}(n,1),text{PU}(n,1)$ or $text{PSp}(n,1)$ and let $Gamma leq text{G}(n)$ be a uniform lattice. Denote by $mathbb{H}^n_K$ the hyperbolic space associated to $text{G}(n)$, where $K$ is a division algebra over
Multiplicative constants are a fundamental tool in the study of maximal representations. In this paper we show how to extend such notion, and the associated framework, to measurable cocycles theory. As an application of this approach, we define and s
Following the work of Burger, Iozzi and Wienhard for representations, in this paper we introduce the notion of maximal measurable cocycles of a surface group. More precisely, let $mathbf{G}$ be a semisimple algebraic $mathbb{R}$-group such that $G=ma
As for the theory of maximal representations, we introduce the volume of a Zimmers cocycle $Gamma times X rightarrow mbox{PO}^circ(n, 1)$, where $Gamma$ is a torsion-free (non-)uniform lattice in $mbox{PO}^circ(n, 1)$, with $n geq 3$, and $X$ is a su