ﻻ يوجد ملخص باللغة العربية
Quantum computers are growing in size, and design decisions are being made now that attempt to squeeze more computation out of these machines. In this spirit, we design a method to boost the computational power of near-term quantum computers by adapting protocols used in quantum error correction to implement Approximate Quantum Error Correction (AQEC). By approximating fully-fledged error correction mechanisms, we can increase the compute volume (qubits $times$ gates, or Simple Quantum Volume (SQV)) of near-term machines. The crux of our design is a fast hardware decoder that can approximately decode detected error syndromes rapidly. Specifically, we demonstrate a proof-of-concept that approximate error decoding can be accomplished online in near-term quantum systems by designing and implementing a novel algorithm in Single-Flux Quantum (SFQ) superconducting logic technology. This avoids a critical decoding backlog, hidden in all offline decoding schemes, that leads to idle time exponential in the number of T gates in a program. Our design utilizes one SFQ processing module per physical qubit. Employing state-of-the-art SFQ synthesis tools, we show that the circuit area, power, and latency are within the constraints of contemporary quantum system designs. Under pure dephasing error models, the proposed accelerator and AQEC solution is able to expand SQV by factors between 3,402 and 11,163 on expected near-term machines. The decoder achieves a $5%$ accuracy-threshold and pseudo-thresholds of $sim$ $5%, 4.75%, 4.5%,$ and $3.5%$ physical error-rates for code distances $3, 5, 7,$ and $9$. Decoding solutions are achieved in a maximum of $sim 20$ nanoseconds on the largest code distances studied. By avoiding the exponential idle time in offline decoders, we achieve a $10$x reduction in required code distances to achieve the same logical performance as alternative designs.
The accumulation of quantum phase in response to a signal is the central mechanism of quantum sensing, as such, loss of phase information presents a fundamental limitation. For this reason approaches to extend quantum coherence in the presence of noi
To implement fault-tolerant quantum computation with continuous variables, the Gottesman--Kitaev--Preskill (GKP) qubit has been recognized as an important technological element. We have proposed a method to reduce the required squeezing level to real
Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of todays classical digital computers, but noise in quantum gate
Quantum error correction (QEC) is an essential concept for any quantum information processing device. Typically, QEC is designed with minimal assumptions about the noise process; this generic assumption exacts a high cost in efficiency and performanc
Based on the group structure of a unitary Lie algebra, a scheme is provided to systematically and exhaustively generate quantum error correction codes, including the additive and nonadditive codes. The syndromes in the process of error-correction dis