ترغب بنشر مسار تعليمي؟ اضغط هنا

Algebraic Quantum Error-Correction Codes

131   0   0.0 ( 0 )
 نشر من قبل YuPei Chu
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the group structure of a unitary Lie algebra, a scheme is provided to systematically and exhaustively generate quantum error correction codes, including the additive and nonadditive codes. The syndromes in the process of error-correction distinguished by different orthogonal vector subspaces, the coset subspaces. Moreover, the generated codes can be classified into four types with respect to the spinors in the unitary Lie algebra and a chosen initial quantum state.



قيم البحث

اقرأ أيضاً

566 - Roee Ozeri 2013
Methods borrowed from the world of quantum information processing have lately been used to enhance the signal-to-noise ratio of quantum detectors. Here we analyze the use of stabilizer quantum error-correction codes for the purpose of signal detectio n. We show that using quantum error-correction codes a small signal can be measured with Heisenberg limited uncertainty even in the presence of noise. We analyze the limitations to the measurement of signals of interest and discuss two simple examples. The possibility of long coherence times, combined with their Heisenberg limited sensitivity to certain signals, pose quantum error-correction codes as a promising detection scheme.
Quantum error correction is widely thought to be the key to fault-tolerant quantum computation. However, determining the most suited encoding for unknown error channels or specific laboratory setups is highly challenging. Here, we present a reinforce ment learning framework for optimizing and fault-tolerantly adapting quantum error correction codes. We consider a reinforcement learning agent tasked with modifying a family of surface code quantum memories until a desired logical error rate is reached. Using efficient simulations with about 70 data qubits with arbitrary connectivity, we demonstrate that such a reinforcement learning agent can determine near-optimal solutions, in terms of the number of data qubits, for various error models of interest. Moreover, we show that agents trained on one setting are able to successfully transfer their experience to different settings. This ability for transfer learning showcases the inherent strengths of reinforcement learning and the applicability of our approach for optimization from off-line simulations to on-line laboratory settings.
Fracton topological phases have a large number of materialized symmetries that enforce a rigid structure on their excitations. Remarkably, we find that the symmetries of a quantum error-correcting code based on a fracton phase enable us to design dec oding algorithms. Here we propose and implement decoding algorithms for the three-dimensional X-cube model. In our example, decoding is parallelized into a series of two-dimensional matching problems, thus significantly simplifying the most time consuming component of the decoder. We also find that the rigid structure of its point excitations enable us to obtain high threshold error rates. Our decoding algorithms bring to light some key ideas that we expect to be useful in the design of decoders for general topological stabilizer codes. Moreover, the notion of parallelization unifies several concepts in quantum error correction. We conclude by discussing the broad applicability of our methods, and we explain the connection between parallelizable codes and other methods of quantum error correction. In particular we propose that the new concept represents a generalization of single-shot error correction.
218 - Kosuke Fukui , Akihisa Tomita , 2018
To implement fault-tolerant quantum computation with continuous variables, the Gottesman--Kitaev--Preskill (GKP) qubit has been recognized as an important technological element. We have proposed a method to reduce the required squeezing level to real ize large scale quantum computation with the GKP qubit [Phys. Rev. X. {bf 8}, 021054 (2018)], harnessing the virtue of analog information in the GKP qubits. In the present work, to reduce the number of qubits required for large scale quantum computation, we propose the tracking quantum error correction, where the logical-qubit level quantum error correction is partially substituted by the single-qubit level quantum error correction. In the proposed method, the analog quantum error correction is utilized to make the performances of the single-qubit level quantum error correction almost identical to those of the logical-qubit level quantum error correction in a practical noise level. The numerical results show that the proposed tracking quantum error correction reduces the number of qubits during a quantum error correction process by the reduction rate $left{{2(n-1)times4^{l-1}-n+1}right}/({2n times 4^{l-1}})$ for $n$-cycles of the quantum error correction process using the Knills $C_{4}/C_{6}$ code with the concatenation level $l$. Hence, the proposed tracking quantum error correction has great advantage in reducing the required number of physical qubits, and will open a new way to bring up advantage of the GKP qubits in practical quantum computation.
We introduce a notion of nuclear numerical range defined as the set of expectation values of a given operator $A$ among normalized pure states, which belong to the nucleus of an auxiliary operator $Z$. This notion proves to be applicable to investiga te models of quantum noise with block-diagonal structure of the corresponding Kraus operators. The problem of constructing a suitable quantum error correction code for this model can be restated as a geometric problem of finding intersection points of certain sets in the complex plane. This technique, worked out in the case of two-qubit systems, can be generalized for larger dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا