ﻻ يوجد ملخص باللغة العربية
Quantum error correction (QEC) is an essential concept for any quantum information processing device. Typically, QEC is designed with minimal assumptions about the noise process; this generic assumption exacts a high cost in efficiency and performance. In physical systems, errors are not likely to be arbitrary; rather we will have reasonable models for the structure of quantum decoherence. We may choose quantum error correcting codes and recovery operations that specifically target the most likely errors. We present a convex optimization method to determine the optimal (in terms of average entanglement fidelity) recovery operation for a given channel, encoding, and information source. This is solvable via a semidefinite program (SDP). We present computational algorithms to generate near-optimal recovery operations structured to begin with a projective syndrome measurement. These structured operations are more computationally scalable than the SDP required for computing the optimal; we can thus numerically analyze longer codes. Using Lagrange duality, we bound the performance of the structured recovery operations and show that they are nearly optimal in many relevant cases. We present two classes of channel-adapted quantum error correcting codes specifically designed for the amplitude damping channel. These have significantly higher rates with shorter block lengths than corresponding generic quantum error correcting codes. Both classes are stabilizer codes, and have good fidelity performance with stabilizer recovery operations. The encoding, syndrome measurement, and syndrome recovery operations can all be implemented with Clifford group operations.
We present a class of numerical algorithms which adapt a quantum error correction scheme to a channel model. Given an encoding and a channel model, it was previously shown that the quantum operation that maximizes the average entanglement fidelity ma
We consider error correction procedures designed specifically for the amplitude damping channel. We analyze amplitude damping errors in the stabilizer formalism. This analysis allows a generalization of the [4,1] `approximate amplitude damping code o
To implement fault-tolerant quantum computation with continuous variables, the Gottesman--Kitaev--Preskill (GKP) qubit has been recognized as an important technological element. We have proposed a method to reduce the required squeezing level to real
Based on the group structure of a unitary Lie algebra, a scheme is provided to systematically and exhaustively generate quantum error correction codes, including the additive and nonadditive codes. The syndromes in the process of error-correction dis
Continuous-time quantum error correction (CTQEC) is an approach to protecting quantum information from noise in which both the noise and the error correcting operations are treated as processes that are continuous in time. This chapter investigates C