ﻻ يوجد ملخص باللغة العربية
Vector control plays a central role in the fight against vector-borne diseases and, in particular, arboviruses. The use of the endosymbiotic bacterium Wolbachia has proven effective in preventing the transmission of some of these viruses between mosquitoes and humans, making it a promising control tool. The Incompatible Insect Technique (IIT) consists in replacing the wild population by a population carrying the aforementioned bacterium, thereby preventing outbreaks of the associated vector-borne diseases. In this work, we consider a two species model incorporating both Wolbachia infected and wild mosquitoes. Our system can be controlled thanks to a term representing an artificial introduction of Wolbachia-infected mosquitoes. Under the assumption that the birth rate of mosquitoes is high, we may reduce the model to a simpler one on the proportion of infected mosquitoes. We investigate minimal cost-time strategies to achieve a population replacement both analytically and numerically for the simplified 1D model and only numerically for the full 2D system
In this article, we are interested in the analysis and simulation of solutions to an optimal control problem motivated by population dynamics issues. In order to control the spread of mosquito-borne arboviruses, the population replacement technique c
Our goal is to study controllability and observability properties of the 1D heat equation with internal control (or observation) set $omega_{varepsilon}=(x_{0}-varepsilon, x_{0}+varepsilon )$, in the limit $varepsilonrightarrow 0$, where $x_{0}in (0,
Robotic vision plays a key role for perceiving the environment in grasping applications. However, the conventional framed-based robotic vision, suffering from motion blur and low sampling rate, may not meet the automation needs of evolving industrial
Mosquitoes are responsible for the transmission of many diseases such as dengue fever, zika or chigungunya. One way to control the spread of these diseases is to use the sterile insect technique (SIT), which consists in a massive release of sterilize
We study the chemotaxis model $partial$ t u = div($ abla$u -- u$ abla$w) + $theta$v -- u in (0, $infty$) x $Omega$, $partial$ t v = u -- $theta$v in (0, $infty$) x $Omega$, $partial$ t w = D$Delta$w -- $alpha$w + v in (0, $infty$) x $Omega$, with no-