ﻻ يوجد ملخص باللغة العربية
We study the chemotaxis model $partial$ t u = div($ abla$u -- u$ abla$w) + $theta$v -- u in (0, $infty$) x $Omega$, $partial$ t v = u -- $theta$v in (0, $infty$) x $Omega$, $partial$ t w = D$Delta$w -- $alpha$w + v in (0, $infty$) x $Omega$, with no-flux boundary conditions in a bounded and smooth domain $Omega$ $subset$ R 2 , where u and v represent the densities of subpopulations of moving and static individuals of some species, respectively, and w the concentration of a chemoattractant. We prove that, in an appropriate functional setting, all solutions exist globally in time. Moreover, we establish the existence of a critical mass M c > 0 of the whole population u + v such that, for M $in$ (0, M c), any solution is bounded, while, for almost all M > M c , there exist solutions blowing up in infinite time. The building block of the analysis is the construction of a Liapunov functional. As far as we know, this is the first result of this kind when the mass conservation includes the two subpopulations and not only the moving one.
We consider the nonlinear Schrodinger equation [ u_t = i Delta u + | u |^alpha u quad mbox{on ${mathbb R}^N $, $alpha>0$,} ] for $H^1$-subcritical or critical nonlinearities: $(N-2) alpha le 4$. Under the additional technical assumptions $alphageq 2$
We consider reaction-diffusion equations either posed on Riemannian manifolds or in the Euclidean weighted setting, with pow-er-type nonlinearity and slow diffusion of porous medium time. We consider the particularly delicate case $p<m$ in problem (1
In this paper, we study the time periodic problem to a three-dimensional chemotaxis-Stokes model with porous medium diffusion $Delta n^m$ and inhomogeneous mixed boundary conditions. By using a double-level approximation method and some iterative tec
This paper addresses the existence and regularity of weak solutions for a fully parabolic model of chemotaxis, with prevention of overcrowding, that degenerates in a two-sided fashion, including an extra nonlinearity represented by a $p$-Laplacian di
This paper studies the following system of differential equations modeling tumor angiogenesis in a bounded smooth domain $Omega subset mathbb{R}^N$ ($N=1,2$): $$label{0} left{begin{array}{ll} p_t=Delta p- ablacdotp p(displaystylefrac alpha {1+c}