ﻻ يوجد ملخص باللغة العربية
We present a number of new results about range searching for colored (or categorical) data: 1. For a set of $n$ colored points in three dimensions, we describe randomized data structures with $O(nmathop{rm polylog}n)$ space that can report the distinct colors in any query orthogonal range (axis-aligned box) in $O(kmathop{rm polyloglog} n)$ expected time, where $k$ is the number of distinct colors in the range, assuming that coordinates are in ${1,ldots,n}$. Previous data structures require $O(frac{log n}{loglog n} + k)$ query time. Our result also implies improvements in higher constant dimensions. 2. Our data structures can be adapted to halfspace ranges in three dimensions (or circular ranges in two dimensions), achieving $O(klog n)$ expected query time. Previous data structures require $O(klog^2n)$ query time. 3. For a set of $n$ colored points in two dimensions, we describe a data structure with $O(nmathop{rm polylog}n)$ space that can answer colored type-2 range counting queries: report the number of occurrences of every distinct color in a query orthogonal range. The query time is $O(frac{log n}{loglog n} + kloglog n)$, where $k$ is the number of distinct colors in the range. Naively performing $k$ uncolored range counting queries would require $O(kfrac{log n}{loglog n})$ time. Our data structures are designed using a variety of techniques, including colored variants of randomized incremental construction (which may be of independent interest), colored variants of shallow cuttings, and bit-packing tricks.
The problem of finding the maximum number of vertex-disjoint uni-color paths in an edge-colored graph (called MaxCDP) has been recently introduced in literature, motivated by applications in social network analysis. In this paper we investigate how t
Longest Run Subsequence is a problem introduced recently in the context of the scaffolding phase of genome assembly (Schrinner et al., WABI 2020). The problem asks for a maximum length subsequence of a given string that contains at most one run for e
We investigate the computational complexity of the following problem. We are given a graph in which each vertex has an initial and a target color. Each pair of adjacent vertices can swap their current colors. Our goal is to perform the minimum number
For any $epsilon>0$, Laue and Matijevi{c} [CCCG07, IPL08] give a PTAS for finding a $(1+epsilon)$-approximate solution to the $k$-hop MST problem in the Euclidean plane that runs in time $(n/epsilon)^{O(k/epsilon)}$. In this paper, we present an algo