ﻻ يوجد ملخص باللغة العربية
We investigate the computational complexity of the following problem. We are given a graph in which each vertex has an initial and a target color. Each pair of adjacent vertices can swap their current colors. Our goal is to perform the minimum number of swaps so that the current and target colors agree at each vertex. When the colors are chosen from {1,2,...,c}, we call this problem c-Colored Token Swapping since the current color of a vertex can be seen as a colored token placed on the vertex. We show that c-Colored Token Swapping is NP-complete for c = 3 even if input graphs are restricted to connected planar bipartite graphs of maximum degree 3. We then show that 2-Colored Token Swapping can be solved in polynomial time for general graphs and in linear time for trees. Besides, we show that, the problem for complete graphs is fixed-parameter tractable when parameterized by the number of colors, while it is known to be NP-complete when the number of colors is unbounded.
The problem of finding the maximum number of vertex-disjoint uni-color paths in an edge-colored graph (called MaxCDP) has been recently introduced in literature, motivated by applications in social network analysis. In this paper we investigate how t
Best match graphs (BMGs) are vertex-colored digraphs that naturally arise in mathematical phylogenetics to formalize the notion of evolutionary closest genes w.r.t. an a priori unknown phylogenetic tree. BMGs are explained by unique least resolved tr
Suppose that two independent sets $I$ and $J$ of a graph with $vert I vert = vert J vert$ are given, and a token is placed on each vertex in $I$. The Sliding Token problem is to determine whether there exists a sequence of independent sets which tran
Given a graph where every vertex has exactly one labeled token, how can we most quickly execute a given permutation on the tokens? In (sequential) token swapping, the goal is to use the shortest possible sequence of swaps, each of which exchanges the