ﻻ يوجد ملخص باللغة العربية
For any $epsilon>0$, Laue and Matijevi{c} [CCCG07, IPL08] give a PTAS for finding a $(1+epsilon)$-approximate solution to the $k$-hop MST problem in the Euclidean plane that runs in time $(n/epsilon)^{O(k/epsilon)}$. In this paper, we present an algorithm that runs in time $(n/epsilon)^{O(log k cdot(1/epsilon)^2cdotlog^2(1/epsilon))}$. This gives an improvement on the dependency on $k$ on the exponent, while having a worse dependency on $epsilon$. As in Laue and Matijevi{c}, we follow the framework introduced by Arora for Euclidean TSP. Our key ingredients include exponential distance scaling and compression of dynamic programming state tables.
Given a graph $G=(V,E)$ and an integer $k ge 1$, a $k$-hop dominating set $D$ of $G$ is a subset of $V$, such that, for every vertex $v in V$, there exists a node $u in D$ whose hop-distance from $v$ is at most $k$. A $k$-hop dominating set of minimu
We study the problem of finding a minimum weight connected subgraph spanning at least $k$ vertices on planar, node-weighted graphs. We give a $(4+eps)$-approximation algorithm for this problem. We achieve this by utilizing the recent LMP primal-dual
The Non-Uniform $k$-center (NUkC) problem has recently been formulated by Chakrabarty, Goyal and Krishnaswamy [ICALP, 2016] as a generalization of the classical $k$-center clustering problem. In NUkC, given a set of $n$ points $P$ in a metric space a
In this paper, we consider the colorful $k$-center problem, which is a generalization of the well-known $k$-center problem. Here, we are given red and blue points in a metric space, and a coverage requirement for each color. The goal is to find the s
We study the Steiner tree problem on map graphs, which substantially generalize planar graphs as they allow arbitrarily large cliques. We obtain a PTAS for Steiner tree on map graphs, which builds on the result for planar edge weighted instances of B