ﻻ يوجد ملخص باللغة العربية
We perform projective quantum Monte Carlo simulations of zigzag graphene nanoribbons within a realistic model with long-range Coulomb interactions. Increasing the relative strength of nonlocal interactions with respect to the on-site repulsion does not generate a phase transition but has a number of nontrivial effects. At the single-particle level we observe a marked enhancement of the Fermi velocity at the Dirac points. At the two-particle level, spin- and charge-density-wave fluctuations compete. As a consequence, the edge magnetic moment is reduced but the edge dispersion relation increases in the sense that the single-particle gap at momentum $q=pi/|{pmb a}_1|$ grows. We attribute this to nonlocal charge fluctuations which assist the spin fluctuations to generate the aforementioned gap. In contrast, the net result of the interaction-induced renormalization of different energy scales is a constant spin-wave velocity of the edge modes. However, since the particle-hole continuum is shifted to higher energies---due to the renormalization of the Fermi velocity---Landau damping is reduced. As a result, a roughly linear spin-wave-like mode at the edge spreads out through a larger part of the Brillouin zone.
We unveil the nature of the structural disorder in bottom-up zigzag graphene nanoribbons along with its effect on the magnetism and electronic transport on the basis of scanning probe microscopies and first-principles calculations. We find that edge-
We investigate the low-lying excitation spectrum and ground-state properties of narrow graphene nanoribbons with zigzag edge configurations. Nanoribbons of comparable widths have been synthesized very recently [P. Ruffieux, emph{et al.} Nature textbf
The tunable magnetism at graphene edges with lengths of up to 48 unit cells is analyzed by an exact diagonalization technique. For this we use a generalized interacting one-dimensional model which can be tuned continuously from a limit describing gra
It is shown that apart from well-known factors, like temperature, substrate, and edge reconstruction effects, also the presence of external contacts is destructive for the formation of magnetic moments at the edges of graphene nanoribbons. The edge m
We study the role of electronic spin and valley symmetry in the quantum interference (QI) patterns of the transmission function in graphene quantum junctions. In particular, we link it to the position of the destructive QI anti-resonances. When the s