ﻻ يوجد ملخص باللغة العربية
The kinematic flow pattern in slow deformation of a model dense granular medium is studied at high resolution using emph{in situ} imaging, coupled with particle tracking. The deformation configuration is indentation by a flat punch under macroscopic plane-strain conditions. Using a general analysis method, velocity gradients and deformation fields are obtained from the disordered grain arrangement, enabling flow characteristics to be quantified. The key observations are the formation of a stagnation zone, as in dilute granular flow past obstacles; occurrence of vortices in the flow immediately underneath the punch; and formation of distinct shear bands adjoining the stagnation zone. The transient and steady state stagnation zone geometry, as well as the strength of the vortices and strain rates in the shear bands, are obtained from the experimental data. All of these results are well-reproduced in exact-scale Non-Smooth Contact Dynamics (NSCD) simulations. Full 3D numerical particle positions from the simulations allow extraction of flow features that are extremely difficult to obtain from experiments. Three examples of these, namely material free surface evolution, deformation of a grain column below the punch and resolution of velocities inside the primary shear band, are highlighted. The variety of flow features observed in this model problem also illustrates the difficulty involved in formulating a complete micromechanical analytical description of the deformation.
Modeling collective motion in non-conservative systems, such as granular materials, is difficult since a general microscopic-to-macroscopic approach is not available: there is no Hamiltonian, no known stationary densities in phase space, not a known
Experimental measurements of particle dynamics on the lower surface of a 3D Couette cell containing monodisperse spheres are reported. The average radial density and velocity profiles are similar to those previously measured within the bulk and on th
We consider dense rapid shear flow of inelastically colliding hard disks. Navier-Stokes granular hydrodynamics is applied accounting for the recent finding cite{Luding,Khain} that shear viscosity diverges at a lower density than the rest of constitut
We report a combined experimental and simulation study of deformation-induced diffusion in compacted two-dimensional amorphous granular pillars, in which thermal fluctuations play negligible role. The pillars, consisting of bidisperse cylindrical ace
We test the elasticity of granular aggregates using increments of shear and volume strain in a numerical simulation. We find that the increment in volume strain is almost reversible, but the increment in shear strain is not. The strength of this irre