ترغب بنشر مسار تعليمي؟ اضغط هنا

Post-explosion evolution of core-collapse supernovae

134   0   0.0 ( 0 )
 نشر من قبل Almudena Arcones
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the post-explosion phase in core-collapse supernovae with 2D hydrodynamical simulations and a simple neutrino treatment. The latter allows us to perform 46 simulations and follow the evolution of the 32 successful explosions during several seconds. We present a broad study based on three progenitors (11.2 $M_odot$, 15 $M_odot$, and 27 $M_odot$), different neutrino-heating efficiencies, and various rotation rates. We show that the first seconds after shock revival determine the final explosion energy, remnant mass, and properties of ejected matter. Our results suggest that a continued mass accretion increases the explosion energy even at late times. We link the late-time mass accretion to initial conditions such as rotation strength and shock deformation at explosion time. Only some of our simulations develop a neutrino-driven wind that survives for several seconds. This indicates that neutrino-driven winds are not a standard feature expected after every successful explosion. Even if our neutrino treatment is simple, we estimate the nucleosynthesis of the exploding models for the 15 $M_odot$ progenitor after correcting the neutrino energies and luminosities to get a more realistic electron fraction.



قيم البحث

اقرأ أيضاً

Recent multi-dimensional simulations of core-collapse supernovae are producing successful explosions and explosion-energy predictions. In general, the explosion-energy evolution is monotonic and relatively smooth, suggesting a possible analytic solut ion. We derive analytic solutions for the expansion of the gain region under the following assumptions: spherical symmetry, one-zone shell, and powered by neutrinos and $alpha$ particle recombination. We consider two hypotheses: I) explosion energy is powered by neutrinos and $alpha$ recombination, II) explosion energy is powered by neutrinos alone. Under these assumptions, we derive the fundamental dimensionless parameters and analytic scalings. For the neutrino-only hypothesis (II), the asymptotic explosion energy scales as $E_{infty} approx 1.5 M_g v_0^2 eta^{2/3}$, where $M_g$ is the gain mass, $v_0$ is the free-fall velocity at the shock, and $eta$ is a ratio of the heating and dynamical time scales. Including both neutrinos and recombination (hypothesis I), the asymptotic explosion energy is $E_{infty} approx M_g v_0^2 (1.5eta^{2/3} + beta f(rho_0))$, where $beta$ is the dimensionless recombination parameter. We use Bayesian inference to fit these analytic models to simulations. Both hypotheses fit the simulations of the lowest progenitor masses that tend to explode spherically. The fits do not prefer hypothesis I or II; however, prior investigations suggest that $alpha$ recombination is important. As expected, neither hypothesis fits the higher-mass simulations that exhibit aspherical explosions. In summary, this explosion-energy theory is consistent with the spherical explosions of low progenitor masses; the inconsistency with higher progenitor-mass simulations suggests that a theory for them must include aspherical dynamics.
We present modelling of line polarization to study multi-dimensional geometry of stripped-envelope core-collapse supernovae (SNe). We demonstrate that a purely axisymmetric, two-dimensional geometry cannot reproduce a loop in the Stokes Q-U diagram, i.e., a variation of the polarization angles along the velocities associated with the absorption lines. On the contrary, three-dimensional (3D) clumpy structures naturally reproduce the loop. The fact that the loop is commonly observed in stripped-envelope SNe suggests that SN ejecta generally have a 3D structure. We study the degree of line polarization as a function of the absorption depth for various 3D clumpy models with different clump sizes and covering factors. Comparison between the calculated and observed degree of line polarization indicates that a typical size of the clump is relatively large, >~ 25 % of the photospheric radius. Such large-scale clumps are similar to those observed in the SN remnant Cassiopeia A. Given the small size of the observed sample, the covering factor of the clumps is only weakly constrained (~ 5-80 %). The presence of large-scale clumpy structure suggests that the large-scale convection or standing accretion shock instability takes place at the onset of the explosion.
233 - C. D. Ott 2009
Core-collapse supernovae are among Natures most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of gal axies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmanis scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.
145 - Maryam Modjaz 2010
Metallicity is expected to influence not only the lives of massive stars but also the outcome of their deaths as supernovae (SNe) and as gamma-ray bursts (GRBs). However, there are surprisingly few direct measurements of the local metallicities of di fferent flavors of core-collapse SNe. Here we present the largest existing set of host-galaxy spectra with H II region emission lines at the sites of 35 stripped-envelope core-collapse SNe. We derive local oxygen abundances in a robust manner in order to constrain the SN Ib/c progenitor population. We obtain spectra at the SN sites, include SNe from targeted and untargeted surveys, and perform the abundance determinatinos using three different oxygen-abundance calibrations. The sites of SNe Ic (the demise of the most heavily stripped stars having lost both the H and He layers) are systematically more metal rich than those of SNe Ib (arising from stars that retained their He layer) in all calibrations. A Kolmogorov-Smirnov test yields the very low probability of 1% that SN Ib and SN Ic environment abundances, which are different on average by ~0.2 dex (in the Pettini & Pagel scale), are drawn from the same parent population. Broad-lined SNe Ic (without GRBs) occur at metallicities between those of SNe Ib and SNe Ic. Lastly, we find that the host-galaxy central oxygen abundance is not a good indicator of the local SN metallicity; hence, large-scale SN surveys need to obtain local abundance measurements in order to quantify the impact of metallicity on stellar death.
126 - Alexander Summa 2015
We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11-28 solar masses, including progenitors recently investigated by other groups. All mo dels develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si-O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si-O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection time scales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا