ﻻ يوجد ملخص باللغة العربية
This paper is devoted to the study of a discrepancy-type characteristic -- the fixed volume discrepancy -- of the Korobov point sets in the unit cube. It was observed recently that this new characteristic allows us to obtain optimal rate of dispersion from numerical integration results. This observation motivates us to thoroughly study this new version of discrepancy, which seems to be interesting by itself. This paper extends recent results by V. Temlyakov and M. Ullrich on the fixed volume discrepancy of the Fibonacci point sets.
The smooth fixed volume discrepancy in the periodic case is studied here. It is proved that the Frolov point sets adjusted to the periodic case have optimal in a certain sense order of decay of the smooth periodic discrepancy. The upper bounds for th
Solving linear systems is a ubiquitous task in science and engineering. Because directly inverting a large-scale linear system can be computationally expensive, iterative algorithms are often used to numerically find the inverse. To accommodate the d
It is proved that the Fibonacci and the Frolov point sets, which are known to be very good for numerical integration, have optimal rate of decay of dispersion with respect to the cardinality of sets. This implies that the Fibonacci and the Frolov poi
In this paper, we combine the nonlinear HWENO reconstruction in cite{newhwenozq} and the fixed-point iteration with Gauss-Seidel fast sweeping strategy, to solve the static Hamilton-Jacobi equations in a novel HWENO framework recently developed in ci
Recently developed concept of dissipative measure-valued solution for compressible flows is a suitable tool to describe oscillations and singularities possibly developed in solutions of multidimensional Euler equations. In this paper we study the con