ترغب بنشر مسار تعليمي؟ اضغط هنا

Fixed volume discrepancy in the periodic case

59   0   0.0 ( 0 )
 نشر من قبل Vladimir Temlyakov
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف V.N. Temlyakov




اسأل ChatGPT حول البحث

The smooth fixed volume discrepancy in the periodic case is studied here. It is proved that the Frolov point sets adjusted to the periodic case have optimal in a certain sense order of decay of the smooth periodic discrepancy. The upper bounds for the $r$-smooth fixed volume periodic discrepancy for these sets are established.



قيم البحث

اقرأ أيضاً

This paper is devoted to the study of a discrepancy-type characteristic -- the fixed volume discrepancy -- of the Korobov point sets in the unit cube. It was observed recently that this new characteristic allows us to obtain optimal rate of dispersio n from numerical integration results. This observation motivates us to thoroughly study this new version of discrepancy, which seems to be interesting by itself. This paper extends recent results by V. Temlyakov and M. Ullrich on the fixed volume discrepancy of the Fibonacci point sets.
55 - Wenhui Meng , Ruifei Liu 2019
This paper presents a new fast multipole boundary element method (FM-BEM) for solving the acoustic transmission problems in 2D periodic media. We divide the periodic media into many fundamental blocks, and then construct the boundary integral equatio ns in the fundamental block. The fast multipole algorithm is proposed for the square and hexagon periodic systems, the convergence of the algorithm is analyzed. We then apply the proposed method to the acoustic transmission problems for liquid phononic crystals and derive the acoustic band gaps of the phononic crystals. By comparing the results with those from plane wave expansion method, we conclude that our method is efficient and accurate.
111 - V.N. Temlyakov 2017
The goal of this paper is twofold. First, we present a unified way of formulating numerical integration problems from both approximation theory and discrepancy theory. Second, we show how techniques, developed in approximation theory, work in proving lower bounds for recently developed new type of discrepancy -- the smooth discrepancy.
94 - Benjamin Doerr 2021
For $m, d in {mathbb N}$, a jittered sampling point set $P$ having $N = m^d$ points in $[0,1)^d$ is constructed by partitioning the unit cube $[0,1)^d$ into $m^d$ axis-aligned cubes of equal size and then placing one point independently and uniformly at random in each cube. We show that there are constants $c ge 0$ and $C$ such that for all $d$ and all $m ge d$ the expected non-normalized star discrepancy of a jittered sampling point set satisfies [c ,dm^{frac{d-1}{2}} sqrt{1 + log(tfrac md)} le {mathbb E} D^*(P) le C, dm^{frac{d-1}{2}} sqrt{1 + log(tfrac md)}.] This discrepancy is thus smaller by a factor of $Thetabig(sqrt{frac{1+log(m/d)}{m/d}},big)$ than the one of a uniformly distributed random point set of $m^d$ points. This result improves both the upper and the lower bound for the discrepancy of jittered sampling given by Pausinger and Steinerberger (Journal of Complexity (2016)). It also removes the asymptotic requirement that $m$ is sufficiently large compared to $d$.
For an empirical signed measure $mu = frac{1}{N} left(sum_{i=1}^P delta_{x_i} - sum_{i=1}^M delta_{y_i}right)$, particle annihilation (PA) removes $N_A$ particles from both ${x_i}_{i=1}^P$ and ${y_i}_{i=1}^M$ simultaneously, yielding another empirica l signed measure $ u$ such that $int f d u$ approximates to $int f d mu$ within an acceptable accuracy for suitable test functions $f$. Such annihilation of particles carrying opposite importance weights has been extensively utilized for alleviating the numerical sign problem in particle simulations. In this paper, we propose an algorithm for PA in high-dimensional Euclidean space based on hybrid of clustering and matching, dubbed the Sequential-clustering Particle Annihilation via Discrepancy Estimation (SPADE). It consists of two steps: Adaptive clustering of particles via controlling their number-theoretic discrepancies, and independent random matching among positive and negative particles in each cluster. Both deterministic error bounds by the Koksma-Hlawka inequality and non-asymptotic random error bounds by concentration inequalities are proved to be affected by two factors. One factor measures the irregularity of point distributions and reflects their discrete nature. The other relies on the variation of test function and is influenced by the continuity. Only the latter implicitly depends on dimensionality $d$, implying that SPADE can be immune to the curse of dimensionality for a wide class of test functions. Numerical experiments up to $d=1080$ validate our theoretical discoveries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا