ﻻ يوجد ملخص باللغة العربية
Solving linear systems is a ubiquitous task in science and engineering. Because directly inverting a large-scale linear system can be computationally expensive, iterative algorithms are often used to numerically find the inverse. To accommodate the dynamic range and precision requirements, these iterative algorithms are often carried out on floating-point processing units. Low-precision, fixed-point processors require only a fraction of the energy per operation consumed by their floating-point counterparts, yet their current usages exclude iterative solvers due to the computational errors arising from fixed-point arithmetic. In this work, we show that for a simple iterative algorithm, such as Richardson iteration, using a fixed-point processor can provide the same rate of convergence and achieve high-precision solutions beyond its native precision limit when combined with residual iteration. These results indicate that power-efficient computing platform consisting of analog computing devices can be used to solve a broad range of problems without compromising the speed or precision.
The randomized sparse Kaczmarz method was recently proposed to recover sparse solutions of linear systems. In this work, we introduce a greedy variant of the randomized sparse Kaczmarz method by employing the sampling Kaczmarz-Motzkin method, and pro
Projection-based iterative methods for solving large over-determined linear systems are well-known for their simplicity and computational efficiency. It is also known that the correct choice of a sketching procedure (i.e., preprocessing steps that re
We propose an adaptive multigrid preconditioning technology for solving linear systems arising from Discontinuous Petrov-Galerkin (DPG) discretizations. Unlike standard multigrid techniques, this preconditioner involves only trace spaces defined on t
Algebraic models for the reconstruction problem in X-ray computed tomography (CT) provide a flexible framework that applies to many measurement geometries. For large-scale problems we need to use iterative solvers, and we need stopping rules for thes
Discrete variational methods have shown an excellent performance in numerical simulations of different mechanical systems. In this paper, we introduce an iterative method for discrete variational methods appropriate for boundary value problems. More