ترغب بنشر مسار تعليمي؟ اضغط هنا

Fixed-point iterative linear inverse solver with extended precision

188   0   0.0 ( 0 )
 نشر من قبل Zheyuan Zhu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Solving linear systems is a ubiquitous task in science and engineering. Because directly inverting a large-scale linear system can be computationally expensive, iterative algorithms are often used to numerically find the inverse. To accommodate the dynamic range and precision requirements, these iterative algorithms are often carried out on floating-point processing units. Low-precision, fixed-point processors require only a fraction of the energy per operation consumed by their floating-point counterparts, yet their current usages exclude iterative solvers due to the computational errors arising from fixed-point arithmetic. In this work, we show that for a simple iterative algorithm, such as Richardson iteration, using a fixed-point processor can provide the same rate of convergence and achieve high-precision solutions beyond its native precision limit when combined with residual iteration. These results indicate that power-efficient computing platform consisting of analog computing devices can be used to solve a broad range of problems without compromising the speed or precision.



قيم البحث

اقرأ أيضاً

The randomized sparse Kaczmarz method was recently proposed to recover sparse solutions of linear systems. In this work, we introduce a greedy variant of the randomized sparse Kaczmarz method by employing the sampling Kaczmarz-Motzkin method, and pro ve its linear convergence in expectation with respect to the Bregman distance in the noiseless and noisy cases. This greedy variant can be viewed as a unification of the sampling Kaczmarz-Motzkin method and the randomized sparse Kaczmarz method, and hence inherits the merits of these two methods. Numerically, we report a couple of experimental results to demonstrate its superiority
Projection-based iterative methods for solving large over-determined linear systems are well-known for their simplicity and computational efficiency. It is also known that the correct choice of a sketching procedure (i.e., preprocessing steps that re duce the dimension of each iteration) can improve the performance of iterative methods in multiple ways, such as, to speed up the convergence of the method by fighting inner correlations of the system, or to reduce the variance incurred by the presence of noise. In the current work, we show that sketching can also help us to get better theoretical guarantees for the projection-based methods. Specifically, we use good properties of Gaussian sketching to prove an accelerated convergence rate of the sketched relaxation (also known as Motzkins) method. The new estimates hold for linear systems of arbitrary structure. We also provide numerical experiments in support of our theoretical analysis of the sketched relaxation method.
We propose an adaptive multigrid preconditioning technology for solving linear systems arising from Discontinuous Petrov-Galerkin (DPG) discretizations. Unlike standard multigrid techniques, this preconditioner involves only trace spaces defined on t he mesh skeleton, and it is suitable for adaptive hp-meshes. The key point of the construction is the integration of the iterative solver with a fully automatic and reliable mesh refinement process provided by the DPG technology. The efficacy of the solution technique is showcased with numerous examples of linear acoustics and electromagnetic simulations, including simulations in the high-frequency regime, problems which otherwise would be intractable. Finally, we analyze the one-level preconditioner (smoother) for uniform meshes and we demonstrate that theoretical estimates of the condition number of the preconditioned linear system can be derived based on well established theory for self-adjoint positive definite operators.
Algebraic models for the reconstruction problem in X-ray computed tomography (CT) provide a flexible framework that applies to many measurement geometries. For large-scale problems we need to use iterative solvers, and we need stopping rules for thes e methods that terminate the iterations when we have computed a satisfactory reconstruction that balances the reconstruction error and the influence of noise from the measurements. Many such stopping rules are developed in the inverse problems communities, but they have not attained much attention in the CT world. The goal of this paper is to describe and illustrate four stopping rules that are relevant for CT reconstructions.
Discrete variational methods have shown an excellent performance in numerical simulations of different mechanical systems. In this paper, we introduce an iterative method for discrete variational methods appropriate for boundary value problems. More concretely, we explore a parallelization strategy that leverages the power of multicore CPUs and GPUs (graphics cards). We study this parallel method for first-order and second-order Lagrangians and we illustrate its excellent behavior in some interesting applications, namely Zermelos navigation problem, a fuel-optimal navigation problem, and an interpolation problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا