ﻻ يوجد ملخص باللغة العربية
The proliferation of fast, dense, byte-addressable nonvolatile memory suggests that data might be kept in pointer-rich in-memory format across program runs and even process and system crashes. For full generality, such data requires dynamic memory allocation, and while the allocator could in principle rolled into each data structure, it is desirable to make it a separate abstraction. Toward this end, we introduce recoverability, a correctness criterion for persistent allocators, together with a nonblocking allocator, Ralloc, that satisfies this criterion. Ralloc is based on the LRMalloc of Leite and Rocha, with three key innovations. First, we persist just enough information during normal operation to permit correct reconstruction of the heap after a full-system crash. Our reconstruction mechanism performs garbage collection (GC) to identify and remedy any failure-induced memory leaks. Second, we introduce the notion of filter functions, which identify the locations of pointers within persistent blocks to mitigate the limitations of conservative GC. Third, to allow persistent regions to be mapped at an arbitrary address, we employ position-independent (offset-based) pointers for both data and metadata. Experiments show Ralloc to be performance-competitive with both Makalu, the state-of-the-art lock-based persistent allocator, and such transient allocators as LRMalloc and JEMalloc. In particular, reliance on GC and offline metadata reconstruction allows Ralloc to pay almost nothing for persistence during normal operation.
Spark is an in-memory analytics platform that targets commodity server environments today. It relies on the Hadoop Distributed File System (HDFS) to persist intermediate checkpoint states and final processing results. In Spark, immutable data are use
We present RDMAbox, a set of low level RDMA optimizations that provide better performance than previous approaches. The optimizations are packaged in easy-to-use kernel and user space libraries for applications and systems in data center. We demonstr
Co-location and memory sharing between latency-critical services, such as key-value store and web search, and best-effort batch jobs is an appealing approach to improving memory utilization in multi-tenant datacenter systems. However, we find that th
Plenty of research efforts have been devoted to FPGA-based acceleration, due to its low latency and high energy efficiency. However, using the original low-level hardware description languages like Verilog to program FPGAs requires generally good kno
Coalescing RDMA and Persistent Memory (PM) delivers high end-to-end performance for networked storage systems, which requires rethinking the design of efficient hash structures. In general, existing hashing schemes separately optimize RDMA and PM, th