ﻻ يوجد ملخص باللغة العربية
Coalescing RDMA and Persistent Memory (PM) delivers high end-to-end performance for networked storage systems, which requires rethinking the design of efficient hash structures. In general, existing hashing schemes separately optimize RDMA and PM, thus partially addressing the problems of RDMA Access Amplification and High-Overhead PM Consistency. In order to address these problems, we propose a continuity hashing, which is a one-stone-two-birds design to optimize both RDMA and PM. The continuity hashing leverages a fine-grained contiguous shared region, called SBuckets, to provide standby positions for the neighbouring two buckets in case of hash collisions. In the continuity hashing, remote read only needs a single RDMA read to directly fetch the home bucket and the neighbouring SBuckets, which contain all the positions of maintaining a key-value item, thus alleviating RDMA access amplification. Continuity hashing further leverages indicators that can be atomically modified to support log-free PM consistency for all the write operations. Evaluation results demonstrate that compared with state-of-the-art schemes, continuity hashing achieves high throughput (i.e., 1.45X -- 2.43X improvement), low latency (about 1.7X speedup) and the smallest number of PM writes with various workloads, while has acceptable load factors of about 70%.
Synchronous Mirroring (SM) is a standard approach to building highly-available and fault-tolerant enterprise storage systems. SM ensures strong data consistency by maintaining multiple exact data replicas and synchronously propagating every update to
Byte-addressable persistent memories (PM) has finally made their way into production. An important and pressing problem that follows is how to deploy them in existing datacenters. One viable approach is to attach PM as self-contained devices to the n
We present RDMAbox, a set of low level RDMA optimizations that provide better performance than previous approaches. The optimizations are packaged in easy-to-use kernel and user space libraries for applications and systems in data center. We demonstr
Blockchain technologies can enable secure computing environments among mistrusting parties. Permissioned blockchains are particularly enlightened by companies, enterprises, and government agencies due to their efficiency, customizability, and governa
The proliferation of fast, dense, byte-addressable nonvolatile memory suggests that data might be kept in pointer-rich in-memory format across program runs and even process and system crashes. For full generality, such data requires dynamic memory al