ﻻ يوجد ملخص باللغة العربية
Spark is an in-memory analytics platform that targets commodity server environments today. It relies on the Hadoop Distributed File System (HDFS) to persist intermediate checkpoint states and final processing results. In Spark, immutable data are used for storing data updates in each iteration, making it inefficient for long running, iterative workloads. A non-deterministic garbage collector further worsens this problem. Sparkle is a library that optimizes memory usage in Spark. It exploits large shared memory to achieve better data shuffling and intermediate storage. Sparkle replaces the current TCP/IP-based shuffle with a shared memory approach and proposes an off-heap memory store for efficient updates. We performed a series of experiments on scale-out clusters and scale-up machines. The optimized shuffle engine leveraging shared memory provides 1.3x to 6x faster performance relative to Vanilla Spark. The off-heap memory store along with the shared-memory shuffle engine provides more than 20x performance increase on a probabilistic graph processing workload that uses a large-scale real-world hyperlink graph. While Sparkle benefits at most from running on large memory machines, it also achieves 1.6x to 5x performance improvements over scale out cluster with equivalent hardware setting.
The proliferation of fast, dense, byte-addressable nonvolatile memory suggests that data might be kept in pointer-rich in-memory format across program runs and even process and system crashes. For full generality, such data requires dynamic memory al
We present RDMAbox, a set of low level RDMA optimizations that provide better performance than previous approaches. The optimizations are packaged in easy-to-use kernel and user space libraries for applications and systems in data center. We demonstr
Data analytics applications transform raw input data into analytics-specific data structures before performing analytics. Unfortunately, such data ingestion step is often more expensive than analytics. In addition, various types of NVRAM devices are
FPGA-based data processing in datacenters is increasing in popularity due to the demands of modern workloads and the ensuing necessity for specialization in hardware. Driven by this trend, vendors are rapidly adapting reconfigurable devices to suit d
Plenty of research efforts have been devoted to FPGA-based acceleration, due to its low latency and high energy efficiency. However, using the original low-level hardware description languages like Verilog to program FPGAs requires generally good kno