ترغب بنشر مسار تعليمي؟ اضغط هنا

LCP: A Low-Communication Parallelization Method for Fast Neural Network Inference in Image Recognition

76   0   0.0 ( 0 )
 نشر من قبل Ramyad Hadidi
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep neural networks (DNNs) have inspired new studies in myriad edge applications with robots, autonomous agents, and Internet-of-things (IoT) devices. However, performing inference of DNNs in the edge is still a severe challenge, mainly because of the contradiction between the intensive resource requirements of DNNs and the tight resource availability in several edge domains. Further, as communication is costly, taking advantage of other available edge devices by using data- or model-parallelism methods is not an effective solution. To benefit from available compute resources with low communication overhead, we propose the first DNN parallelization method for reducing the communication overhead in a distributed system. We propose a low-communication parallelization (LCP) method in which models consist of several almost-independent and narrow branches. LCP offers close-to-minimum communication overhead with better distribution and parallelization opportunities while significantly reducing memory footprint and computation compared to data- and model-parallelism methods. We deploy LCP models on three distributed systems: AWS instances, Raspberry Pis, and PYNQ boards. We also evaluate the performance of LCP models on a customized hardware (tailored for low latency) implemented on a small edge FPGA and as a 16mW 0.107mm2 ASIC @7nm chip. LCP models achieve a maximum and average speedups of 56x and 7x, compared to the originals, which could be improved by up to an average speedup of 33x by incorporating common optimizations such as pruning and quantization.



قيم البحث

اقرأ أيضاً

214 - Jiawei Shao , Yuyi Mao , Jun Zhang 2021
This paper investigates task-oriented communication for multi-device cooperative edge inference, where a group of distributed low-end edge devices transmit the extracted features of local samples to a powerful edge server for inference. While coopera tive edge inference can overcome the limited sensing capability of a single device, it substantially increases the communication overhead and may incur excessive latency. To enable low-latency cooperative inference, we propose a learning-based communication scheme that optimizes local feature extraction and distributed feature encoding in a task-oriented manner, i.e., to remove data redundancy and transmit information that is essential for the downstream inference task rather than reconstructing the data samples at the edge server. Specifically, we leverage an information bottleneck (IB) principle to extract the task-relevant feature at each edge device and adopt a distributed information bottleneck (DIB) framework to formalize a single-letter characterization of the optimal rate-relevance tradeoff for distributed feature encoding. To admit flexible control of the communication overhead, we extend the DIB framework to a distributed deterministic information bottleneck (DDIB) objective that explicitly incorporates the representational costs of the encoded features. As the IB-based objectives are computationally prohibitive for high-dimensional data, we adopt variational approximations to make the optimization problems tractable. To compensate the potential performance loss due to the variational approximations, we also develop a selective retransmission (SR) mechanism to identify the redundancy in the encoded features of multiple edge devices to attain additional communication overhead reduction. Extensive experiments evidence that the proposed task-oriented communication scheme achieves a better rate-relevance tradeoff than baseline methods.
The separation of the data capture and analysis in modern vision systems has led to a massive amount of data transfer between the end devices and cloud computers, resulting in long latency, slow response, and high power consumption. Efficient hardwar e architectures are under focused development to enable Artificial Intelligence (AI) at the resource-limited end sensing devices. This paper proposes a Processing-In-Pixel (PIP) CMOS sensor architecture, which allows convolution operation before the column readout circuit to significantly improve the image reading speed with much lower power consumption. The simulation results show that the proposed architecture enables convolution operation (kernel size=3*3, stride=2, input channel=3, output channel=64) in a 1080P image sensor array with only 22.62 mW power consumption. In other words, the computational efficiency is 4.75 TOPS/w, which is about 3.6 times as higher as the state-of-the-art.
In this work we present a new framework for neural networks compression with fine-tuning, which we called Neural Network Compression Framework (NNCF). It leverages recent advances of various network compression methods and implements some of them, su ch as sparsity, quantization, and binarization. These methods allow getting more hardware-friendly models which can be efficiently run on general-purpose hardware computation units (CPU, GPU) or special Deep Learning accelerators. We show that the developed methods can be successfully applied to a wide range of models to accelerate the inference time while keeping the original accuracy. The framework can be used within the training samples, which are supplied with it, or as a standalone package that can be seamlessly integrated into the existing training code with minimal adaptations. Currently, a PyTorch version of NNCF is available as a part of OpenVINO Training Extensions at https://github.com/openvinotoolkit/nncf.
98 - Jiawei Shao , Yuyi Mao , 2021
This paper investigates task-oriented communication for edge inference, where a low-end edge device transmits the extracted feature vector of a local data sample to a powerful edge server for processing. It is critical to encode the data into an info rmative and compact representation for low-latency inference given the limited bandwidth. We propose a learning-based communication scheme that jointly optimizes feature extraction, source coding, and channel coding in a task-oriented manner, i.e., targeting the downstream inference task rather than data reconstruction. Specifically, we leverage an information bottleneck (IB) framework to formalize a rate-distortion tradeoff between the informativeness of the encoded feature and the inference performance. As the IB optimization is computationally prohibitive for the high-dimensional data, we adopt a variational approximation, namely the variational information bottleneck (VIB), to build a tractable upper bound. To reduce the communication overhead, we leverage a sparsity-inducing distribution as the variational prior for the VIB framework to sparsify the encoded feature vector. Furthermore, considering dynamic channel conditions in practical communication systems, we propose a variable-length feature encoding scheme based on dynamic neural networks to adaptively adjust the activated dimensions of the encoded feature to different channel conditions. Extensive experiments evidence that the proposed task-oriented communication system achieves a better rate-distortion tradeoff than baseline methods and significantly reduces the feature transmission latency in dynamic channel conditions.
Millimeter-wave (mmW) radars are being increasingly integrated into commercial vehicles to support new advanced driver-assistance systems (ADAS) by enabling robust and high-performance object detection, localization, as well as recognition - a key co mponent of new environmental perception. In this paper, we propose a novel radar multiple-perspectives convolutional neural network (RAMP-CNN) that extracts the location and class of objects based on further processing of the range-velocity-angle (RVA) heatmap sequences. To bypass the complexity of 4D convolutional neural networks (NN), we propose to combine several lower-dimension NN models within our RAMP-CNN model that nonetheless approaches the performance upper-bound with lower complexity. The extensive experiments show that the proposed RAMP-CNN model achieves better average recall (AR) and average precision (AP) than prior works in all testing scenarios (see Table. III). Besides, the RAMP-CNN model is validated to work robustly under the nighttime, which enables low-cost radars as a potential substitute for pure optical sensing under severe conditions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا