ﻻ يوجد ملخص باللغة العربية
In this work we present a new framework for neural networks compression with fine-tuning, which we called Neural Network Compression Framework (NNCF). It leverages recent advances of various network compression methods and implements some of them, such as sparsity, quantization, and binarization. These methods allow getting more hardware-friendly models which can be efficiently run on general-purpose hardware computation units (CPU, GPU) or special Deep Learning accelerators. We show that the developed methods can be successfully applied to a wide range of models to accelerate the inference time while keeping the original accuracy. The framework can be used within the training samples, which are supplied with it, or as a standalone package that can be seamlessly integrated into the existing training code with minimal adaptations. Currently, a PyTorch version of NNCF is available as a part of OpenVINO Training Extensions at https://github.com/openvinotoolkit/nncf.
The field of neural image compression has witnessed exciting progress as recently proposed architectures already surpass the established transform coding based approaches. While, so far, research has mainly focused on architecture and model improveme
This paper describes a set of neural network architectures, called Prediction Neural Networks Set (PNNS), based on both fully-connected and convolutional neural networks, for intra image prediction. The choice of neural network for predicting a given
We propose Neural Image Compression (NIC), a two-step method to build convolutional neural networks for gigapixel image analysis solely using weak image-level labels. First, gigapixel images are compressed using a neural network trained in an unsuper
In this paper, we propose a two-stage deep learning framework called VoxelContext-Net for both static and dynamic point cloud compression. Taking advantages of both octree based methods and voxel based schemes, our approach employs the voxel context
Conventional deep convolutional neural networks (CNNs) apply convolution operators uniformly in space across all feature maps for hundreds of layers - this incurs a high computational cost for real-time applications. For many problems such as object