ترغب بنشر مسار تعليمي؟ اضغط هنا

Sharp disentanglement in holographic charged local quench

106   0   0.0 ( 0 )
 نشر من قبل Dmitry Ageev
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Dmitry S. Ageev




اسأل ChatGPT حول البحث

We propose a charged falling particle in an AdS space as a holographic model of local charged quench generalizing model of arXiv:1302.5703. The quench is followed by evolving currents and inhomogeneous distribution of chemical potential. We derive the analytical formula describing the evolution of the entanglement entropy. At some characteristic time after the quench, we find that the entanglement shows a sharp dip. This effect is universal and independent of the dimension of the system. At finite temperature generalization of this model, we find that multiple dips and ramps appear.



قيم البحث

اقرأ أيضاً

We study the evolution of holographic complexity of pure and mixed states in $1+1$-dimensional conformal field theory following a local quench using both the complexity equals volume (CV) and the complexity equals action (CA) conjectures. We compare the complexity evolution to the evolution of entanglement entropy and entanglement density, discuss the Lloyd computational bound and demonstrate its saturation in certain regimes. We argue that the conjectured holographic complexities exhibit some non-trivial features indicating that they capture important properties of what is expected to be effective (or physical) complexity.
We investigate the evolution of complexity and entanglement following a quench in a one-dimensional topological system, namely the Su-Schrieffer-Heeger model. We demonstrate that complexity can detect quantum phase transitions and shows signatures of revivals; this observation provides a practical advantage in information processing. We also show that the complexity saturates much faster than the entanglement entropy in this system, and we provide a physical argument for this. Finally, we demonstrate that complexity is a less sensitive probe of topological order, compared with measures of entanglement.
Interesting theories with short range interactions include QCD in the hadronic phase and cold atom systems. The scattering length in two-to-two elastic scattering process captures the most elementary features of the interactions, such as whether they are attractive or repulsive. However, even this basic quantity is notoriously difficult to compute from first principles in strongly coupled theories. We present a method to compute the two-to-two amplitudes and the scattering length using the holographic duality. Our method is based on the identification of the residues of Greens functions in the gravity dual with the amplitudes in the field theory. To illustrate the method we compute a contribution to the scattering length in a hard wall model with a quartic potential and find a constraint on the scaling dimension of a scalar operator $Delta > d/4$. For $d< 4$ this is more stringent than the unitarity constraint and may be applicable to an extended family of large-$N$ theories with a discrete spectrum of massive states. We also argue that for scalar potentials with polynomial terms of order $K$, a constraint more restrictive than the unitarity bound will appear for $d<2K/(K-2)$.
We investigate a class of exactly solvable quantum quench protocols with a finite quench rate in systems of one dimensional non-relativistic fermions in external harmonic oscillator or inverted harmonic oscillator potentials, with time dependent mass es and frequencies. These hamiltonians arise, respectively, in harmonic traps, and the $c=1$ Matrix Model description of two dimensional string theory with time dependent string coupling. We show how the dynamics is determined by a single function of time which satisfies a generalized Ermakov-Pinney equation. The quench protocols we consider asymptote to constant masses and frequencies at early times, and cross or approach a gapless potential. In a right side up harmonic oscillator potential we determine the scaling behavior of the one point function and the entanglement entropy of a subregion by obtaining analytic approximations to the exact answers. The results are consistent with Kibble-Zurek scaling for slow quenches and with perturbation calculations for fast quenches. For cis-critical quench protocols the entanglement entropy oscillates at late times around its initial value. For end-critical protocols the entanglement entropy monotonically goes to zero inversely with time, reflecting the spread of fermions over the entire line. For the inverted harmonic oscillator potential, the dual collective field description is a scalar field in a time dependent metric and dilaton background.
130 - Dmitry S. Ageev 2019
This paper is devoted to the study of the evolution of holographic complexity after a local perturbation of the system at finite temperature. We calculate the complexity using both the complexity=action(CA) and the complexity=volume(CA) conjectures a nd find that the CV complexity of the total state shows the unbounded late time linear growth. The CA computation shows linear growth with fast saturation to a constant value. We estimate the CV and CA complexity linear growth coefficients and show, that finite temperature leads to violation of the Lloyd bound for CA complexity. Also it is shown that for composite system after the local quench the state with minimal entanglement may correspond to the maximal complexity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا