ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Quench in Non-relativistic Fermionic Field Theory: Harmonic traps and 2d String Theory

190   0   0.0 ( 0 )
 نشر من قبل Shaun Hampton
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a class of exactly solvable quantum quench protocols with a finite quench rate in systems of one dimensional non-relativistic fermions in external harmonic oscillator or inverted harmonic oscillator potentials, with time dependent masses and frequencies. These hamiltonians arise, respectively, in harmonic traps, and the $c=1$ Matrix Model description of two dimensional string theory with time dependent string coupling. We show how the dynamics is determined by a single function of time which satisfies a generalized Ermakov-Pinney equation. The quench protocols we consider asymptote to constant masses and frequencies at early times, and cross or approach a gapless potential. In a right side up harmonic oscillator potential we determine the scaling behavior of the one point function and the entanglement entropy of a subregion by obtaining analytic approximations to the exact answers. The results are consistent with Kibble-Zurek scaling for slow quenches and with perturbation calculations for fast quenches. For cis-critical quench protocols the entanglement entropy oscillates at late times around its initial value. For end-critical protocols the entanglement entropy monotonically goes to zero inversely with time, reflecting the spread of fermions over the entire line. For the inverted harmonic oscillator potential, the dual collective field description is a scalar field in a time dependent metric and dilaton background.



قيم البحث

اقرأ أيضاً

We study different aspects of quantum field theory at finite density using methods from quantum information theory. For simplicity we focus on massive Dirac fermions with nonzero chemical potential, and work in $1+1$ space-time dimensions. Using the entanglement entropy on an interval, we construct an entropic $c$-function that is finite. Unlike what happens in Lorentz-invariant theories, this $c$-function exhibits a strong violation of monotonicity; it also encodes the creation of long-range entanglement from the Fermi surface. Motivated by previous works on lattice models, we next calculate numerically the Renyi entropies and find Friedel-type oscillations; these are understood in terms of a defect operator product expansion. Furthermore, we consider the mutual information as a measure of correlation functions between different regions. Using a long-distance expansion previously developed by Cardy, we argue that the mutual information detects Fermi surface correlations already at leading order in the expansion. We also analyze the relative entropy and its Renyi generalizations in order to distinguish states with different charge and/or mass. In particular, we show that states in different superselection sectors give rise to a super-extensive behavior in the relative entropy. Finally, we discuss possible extensions to interacting theories, and argue for the relevance of some of these measures for probing non-Fermi liquids.
81 - Akash Jain 2020
We write down a Schwinger-Keldysh effective field theory for non-relativistic (Galilean) hydrodynamics. We use the null background construction to covariantly couple Galilean field theories to a set of background sources. In this language, Galilean h ydrodynamics gets recast as relativistic hydrodynamics formulated on a one-dimension higher spacetime admitting a null Killing vector. This allows us to import the existing field-theoretic techniques for relativistic hydrodynamics into the Galilean setting, with minor modifications to include the additional background vector field. We use this formulation to work out an interacting field theory describing stochastic fluctuations of energy, momentum, and density modes around thermal equilibrium. We also present a translation of our results to the more conventional Newton-Cartan language and discuss how the same can be derived via a non-relativistic limit of the effective field theory for relativistic hydrodynamics.
Double Field Theory provides a geometric framework capable of describing string theory backgrounds that cannot be understood purely in terms of Riemannian geometry -- not only globally (`non-geometry), but even locally (`non-Riemannian). In this work , we show that the non-relativistic closed string theory of Gomis and Ooguri [1] arises precisely as such a non-Riemannian string background, and that the Gomis-Ooguri sigma model is equivalent to the Double Field Theory sigma model of [2] on this background. We further show that the target-space formulation of Double Field Theory on this non-Riemannian background correctly reproduces the appropriate sector of the Gomis-Ooguri string spectrum. To do this, we develop a general semi-covariant formalism describing perturbations in Double Field Theory. We derive compact expressions for the linearized equations of motion around a generic on-shell background, and construct the corresponding fluctuation Lagrangian in terms of novel completely covariant second order differential operators. We also present a new non-Riemannian solution featuring Schrodinger conformal symmetry.
276 - Tobias Binder 2021
In this work, we derive differential equations from path-integral based non-equilibrium quantum field theory, that cover the dynamics and spectrum of non-relativistic two-body fields for any environment. For concreteness of the two-body fields, we ch oose the full potential non-relativistic Quantum Electrodynamics Lagrangian in this work. After closing the correlation function hierarchy of these equations and performing consistency checks with previous literature under certain limits, we demonstrate the range of physics applications. This includes Cosmology such as Dark Matter in the primordial plasma, Quarkonia inside a quark gluon plasma, and superconductivity and Ferromagnetism in Condensed or strongly Correlated Matter physics. Since we always had to take limits or approximations of our equations in order to recover those known cases, our equations could contain new phenomena. In particular it is based on Greens function that can deal with non-hermite potentials. We propose a scheme for other Lagrangian based theories or higher N-body states such as molecules to derive analog equations.
One of the manifestations of relativistic invariance in non-equilibrium quantum field theory is the horizon effect a.k.a. light-cone spreading of correlations: starting from an initially short-range correlated state, measurements of two observers at distant space-time points are expected to remain independent until their past light-cones overlap. Surprisingly, we find that in the presence of topological excitations correlations can develop outside of horizon and indeed even between infinitely distant points. We demonstrate this effect for a wide class of global quantum quenches to the sine-Gordon model. We point out that besides the maximum velocity bound implied by relativistic invariance, clustering of initial correlations is required to establish the horizon effect. We show that quenches in the sine-Gordon model have an interesting property: despite the fact that the initial states have exponentially decaying correlations and cluster in terms of the bosonic fields, they violate the clustering condition for the soliton fields, which is argued to be related to the non-trivial field topology. The nonlinear dynamics governed by the solitons makes the clustering violation manifest also in correlations of the local bosonic fields after the quench.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا