ﻻ يوجد ملخص باللغة العربية
We study the evolution of holographic complexity of pure and mixed states in $1+1$-dimensional conformal field theory following a local quench using both the complexity equals volume (CV) and the complexity equals action (CA) conjectures. We compare the complexity evolution to the evolution of entanglement entropy and entanglement density, discuss the Lloyd computational bound and demonstrate its saturation in certain regimes. We argue that the conjectured holographic complexities exhibit some non-trivial features indicating that they capture important properties of what is expected to be effective (or physical) complexity.
We propose a charged falling particle in an AdS space as a holographic model of local charged quench generalizing model of arXiv:1302.5703. The quench is followed by evolving currents and inhomogeneous distribution of chemical potential. We derive th
This paper is devoted to the study of the evolution of holographic complexity after a local perturbation of the system at finite temperature. We calculate the complexity using both the complexity=action(CA) and the complexity=volume(CA) conjectures a
In this paper, we will propose a universal relation between the holographic complexity (dual to a volume in AdS) and the holographic entanglement entropy (dual to an area in AdS). We will explicitly demonstrate that our conjuncture hold for all a met
We investigate the evolution of complexity and entanglement following a quench in a one-dimensional topological system, namely the Su-Schrieffer-Heeger model. We demonstrate that complexity can detect quantum phase transitions and shows signatures of
An analytic static monopole solution is found in global AdS$_4$, in the limit of small backreaction. This solution is mapped in Poincare patch to a falling monopole configuration, which is dual to a local quench triggered by the injection of a conden