ﻻ يوجد ملخص باللغة العربية
Let $G$ be a finite abelian group. We say that $M$ and $S$ form a textsl{splitting} of $G$ if every nonzero element $g$ of $G$ has a unique representation of the form $g=ms$ with $min M$ and $sin S$, while $0$ has no such representation. The splitting is called textit{purely singular} if for each prime divisor $p$ of $|G|$, there is at least one element of $M$ is divisible by $p$. In this paper, we mainly study the purely singular splittings of cyclic groups. We first prove that if $kge3$ is a positive integer such that $[-k+1, ,k]^*$ splits a cyclic group $mathbb{Z}_m$, then $m=2k$. Next, we have the following general result. Suppose $M=[-k_1, ,k_2]^*$ splits $mathbb{Z}_{n(k_1+k_2)+1}$ with $1leq k_1< k_2$. If $ngeq 2$, then $k_1leq n-2$ and $k_2leq 2n-5$. Applying this result, we prove that if $M=[-k_1, ,k_2]^*$ splits $mathbb{Z}_m$ purely singularly, and either $(i)$ $gcd(s, ,m)=1$ for all $sin S$ or $(ii)$ $m=2^{alpha}p^{beta}$ or $2^{alpha}p_1p_2$ with $alphageq 0$, $betageq 1$ and $p$, $p_1$, $p_2$ odd primes, then $m=k_1+k_2+1$ or $k_1=0$ and $m=k_2+1$ or $2k_2+1$.
We call $n$ a cyclic number if every group of order $n$ is cyclic. It is implicit in work of Dickson, and explicit in work of Szele, that $n$ is cyclic precisely when $gcd(n,phi(n))=1$. With $C(x)$ denoting the count of cyclic $nle x$, ErdH{o}s prove
We prove a general stability theorem for $p$-class groups of number fields along relative cyclic extensions of degree $p^2$, which is a generalization of a finite-extension version of Fukudas theorem by Li, Ouyang, Xu and Zhang. As an application, we
Let $k$ be a number field. We give an explicit bound, depending only on $[k:mathbf{Q}]$ and the discriminant of the N{e}ron--Severi lattice, on the size of the Brauer group of a K3 surface $X/k$ that is geometrically isomorphic to the Kummer surface
We show that a triangle Artin group $text{Art}_{MNP}$ where $Mleq Nleq P$ splits as an amalgamated product or an HNN extension of finite rank free groups, provided that either $M>2$, or $N>3$. We also prove that all even three generator Artin groups are residually finite.
Let $G$ be a finite cyclic group. Every sequence $S$ of length $l$ over $G$ can be written in the form $S=(x_1g)cdotldotscdot(x_lg)$ where $gin G$ and $x_1, ldots, x_lin[1, ord(g)]$, and the index $ind(S)$ of $S$ is defined to be the minimum of $(x_1