ﻻ يوجد ملخص باللغة العربية
We prove a general stability theorem for $p$-class groups of number fields along relative cyclic extensions of degree $p^2$, which is a generalization of a finite-extension version of Fukudas theorem by Li, Ouyang, Xu and Zhang. As an application, we give an example of pseudo-null Iwasawa module over a certain $2$-adic Lie extension.
Let $p$ be a prime. We define the deficiency of a finitely-generated pro-$p$ group $G$ to be $r(G)-d(G)$ where $d(G)$ is the minimal number of generators of $G$ and $r(G)$ is its minimal number of relations. For a number field $K$, let $K_emptyset$ b
We show that for primes $N, p geq 5$ with $N equiv -1 bmod p$, the class number of $mathbb{Q}(N^{1/p})$ is divisible by $p$. Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when $N equiv -1 bmod p
As an analogue of a link group, we consider the Galois group of the maximal pro-$p$-extension of a number field with restricted ramification which is cyclotomically ramified at $p$, i.e, tamely ramified over the intermediate cyclotomic $mathbb Z_p$-e
In this article we explicitly describe irreducible trinomials X^3-aX+b which gives all the cyclic cubic extensions of Q. In doing so, we construct all integral points (x,y,z) with GCD(y,z)=1, of the curves X^2+3Y^2 = 4DZ^3 and X^2+27Y^2=4DZ^3 as D va
Each p-ring class field K(f) modulo a p-admissible conductor f over a quadratic base field K with p-ring class rank r(f) mod f is classified according to Galois cohomology and differential principal factorization type of all members of its associated