ﻻ يوجد ملخص باللغة العربية
In sparse signal representation, the choice of a dictionary often involves a tradeoff between two desirable properties -- the ability to adapt to specific signal data and a fast implementation of the dictionary. To sparsely represent signals residing on weighted graphs, an additional design challenge is to incorporate the intrinsic geometric structure of the irregular data domain into the atoms of the dictionary. In this work, we propose a parametric dictionary learning algorithm to design data-adapted, structured dictionaries that sparsely represent graph signals. In particular, we model graph signals as combinations of overlapping local patterns. We impose the constraint that each dictionary is a concatenation of subdictionaries, with each subdictionary being a polynomial of the graph Laplacian matrix, representing a single pattern translated to different areas of the graph. The learning algorithm adapts the patterns to a training set of graph signals. Experimental results on both synthetic and real datasets demonstrate that the dictionaries learned by the proposed algorithm are competitive with and often better than unstructured dictionaries learned by state-of-the-art numerical learning algorithms in terms of sparse approximation of graph signals. In contrast to the unstructured dictionaries, however, the dictionaries learned by the proposed algorithm feature localized atoms and can be implemented in a computationally efficient manner in signal processing tasks such as compression, denoising, and classification.
How can we find the right graph for semi-supervised learning? In real world applications, the choice of which edges to use for computation is the first step in any graph learning process. Interestingly, there are often many types of similarity availa
Graphon is a nonparametric model that generates graphs with arbitrary sizes and can be induced from graphs easily. Based on this model, we propose a novel algorithmic framework called textit{graphon autoencoder} to build an interpretable and scalable
We study the problem of semi-supervised learning on graphs, for which graph neural networks (GNNs) have been extensively explored. However, most existing GNNs inherently suffer from the limitations of over-smoothing, non-robustness, and weak-generali
Attributed networks nowadays are ubiquitous in a myriad of high-impact applications, such as social network analysis, financial fraud detection, and drug discovery. As a central analytical task on attributed networks, node classification has received
This paper introduces a novel graph signal processing framework for building graph-based models from classes of filtered signals. In our framework, graph-based modeling is formulated as a graph system identification problem, where the goal is to lear