ﻻ يوجد ملخص باللغة العربية
In this paper, we present Lyapunov-based {color{black}time varying} controllers for {color{black}fast} stabilization of a perturbed chain of integrators with bounded uncertainties. We refer to such controllers as {color{black}time varying} higher order sliding mode controllers since they are designed for nonlinear Single-Input-Single-Output (SISO) systems with bounded uncertainties such that the uncertainty bounds are unknown. %{color{blue} OLD: Our main result states that, given any neighborhood $varepsilon$ of the origin, we determine a controller insuring, for every uncertainty bounds, that every trajectory of the corresponding closed loop system enters $varepsilon$ and eventually remains there. Furthermore, based on the homogeneity property, a new asymptotic accuracy, which depends on the size of $varepsilon$, is presented.} We provide a time varying control feedback law insuring verifying the following: there exists a family $(D(t))_{tgeq 0}$ of time varying open sets decreasing to the origin as $t$ tends to infinity, such that, for any unknown uncertainty bounds and trajectory $z(cdot)$ of the corresponding system, there exists a positive positve $t_z$ for which $z(t_z)in D(t_z)$ and $z(t)in D(t)$ for $tgeq t_z$. %enters convergence in finite time of all the trajectories to a time varying domain $D(t)$ shrinking to the origin and their maintenance there. Hence, since the function $eta(t)$ tends to zero, this leads the asymptotic convergence of all the trajectories to zero. The effectiveness of these controllers is illustrated through simulations.
Different time-discretization methods for equivalent-control based sliding mode control (ECB-SMC) are presented. A new discrete-time sliding mode control scheme is proposed for linear time-invariant (LTI) systems. It is error-free in the discretizati
There is an increasing interest in designing differentiators, which converge exactly before a prespecified time regardless of the initial conditions, i.e., which are fixed-time convergent with a predefined Upper Bound of their Settling Time (UBST), d
In this paper, we present a Lyapunov-based homogeneous controller for the stabilization of a perturbed chain of integrators of arbitrary order $rgeq 1$. The proposed controller is based on homogeneous controller for stabilization of pure integrator c
The precise motion control of a multi-degree of freedom~(DOF) robot manipulator is always challenging due to its nonlinear dynamics, disturbances, and uncertainties. Because most manipulators are controlled by digital signals, a novel higher-order sl
This paper focuses on observer based fault reconstruction for a class of nonlinear uncertain systems with Lipschitz nonlinearities. An adaptive-gain Super-Twisting (STW) observer is developed for observing the system states, where the adaptive law co