ﻻ يوجد ملخص باللغة العربية
This paper focuses on observer based fault reconstruction for a class of nonlinear uncertain systems with Lipschitz nonlinearities. An adaptive-gain Super-Twisting (STW) observer is developed for observing the system states, where the adaptive law compensates the uncertainty in parameters. The inherent equivalent output error injection feature of STW algorithm is then used to reconstruct the fault signal. The performance of the proposed observer is validated through a Hardware-In-Loop (HIL) simulator which consists of a commercial twin screw compressor and a real time Polymer Electrolyte Membrane fuel cell emulation system. The simulation results illustrate the feasibility and effectiveness of the proposed approach for application to fuel cell systems.
In this paper, a full-bridge boost power converter topology is studied for power factor control, using output high order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from
We consider the problem of asymptotic reconstruction of the state and parameter values in systems of ordinary differential equations. A solution to this problem is proposed for a class of systems of which the unknowns are allowed to be nonlinearly pa
In this paper, a novel adaptive-gain Second Order Sliding Mode (SOSM) observer is proposed for multicell converters by considering it as a class of hybrid systems. The aim is to reduce the number of voltage sensors by estimating the capacitor voltage
In this paper, we investigate a constrained optimal coordination problem for a class of heterogeneous nonlinear multi-agent systems described by high-order dynamics subject to both unknown nonlinearities and external disturbances. Each agent has a pr
This paper studies the extremum seeking control (ESC) problem for a class of constrained nonlinear systems. Specifically, we focus on a family of constraints allowing to reformulate the original nonlinear system in the so-called input-output normal f