ﻻ يوجد ملخص باللغة العربية
The precise motion control of a multi-degree of freedom~(DOF) robot manipulator is always challenging due to its nonlinear dynamics, disturbances, and uncertainties. Because most manipulators are controlled by digital signals, a novel higher-order sliding mode controller in the discrete-time form with time delay estimation is proposed in this paper. The dynamic model of the manipulator used in the design allows proper handling of nonlinearities, uncertainties and disturbances involved in the problem. Specifically, parametric uncertainties and disturbances are handled by the time delay estimation and the nonlinearity of the manipulator is addressed by the feedback structure of the controller. The combination of terminal sliding mode surface and higher-order control scheme in the controller guarantees a fast response with a small chattering amplitude. Moreover, the controller is designed with a modified sliding mode surface and variable-gain structure, so that the performance of the controller is further enhanced. We also analyze the condition to guarantee the stability of the closed-loop system in this paper. Finally, the simulation and experimental results prove that the proposed control scheme has a precise performance in a robot manipulator system.
This paper addresses the problem of end-effector formation control for manipulators that are subjected to external disturbances: input disturbance torques and disturbance forces at each end-effector. The disturbances are assumed to be non-vanishing a
The paper considers a wireless networked control system (WNCS), where a controller sends packets carrying control information to an actuator through a wireless channel to control a physical process for industrial-control applications. In most of the
This paper addresses the problem of controlling a continuum manipulator (CM) in free or obstructed environments with no prior knowledge about the deformation behavior of the CM and the stiffness and geometry of the interacting obstructed environment.
This paper introduces a new technique for learning probabilistic models of mass and friction distributions of unknown objects, and performing robust sliding actions by using the learned models. The proposed method is executed in two consecutive phase
One of the most important branches of nonlinear control theory is the so-called sliding-mode. Its aim is the design of a (nonlinear) feedback law that brings and maintains the state trajectory of a dynamic system on a given sliding surface. Here, dyn