ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaseous dynamical friction under radiative feedback: do intermediate-mass black holes speed up or down?

94   0   0.0 ( 0 )
 نشر من قبل Daisuke Toyouchi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coalescence of intermediate-mass black holes (IMBHs) as a result of the migration toward galactic centers via dynamical friction may contribute to the formation of supermassive BHs. Here we reinvestigate the gaseous dynamical friction, which was claimed to be inefficient with radiative feedback from BHs in literature, by performing 3D radiation-hydrodynamics simulations that solve the flow structure in the vicinity of BHs. We consider a $10^4~M_odot$ BH moving at the velocity $V_{rm flow}$ through the homogeneous medium with metallicity $Z$ in the range of $0-0.1~Z_odot$ and density $n_{infty}$. We show that, if $n_{infty} lesssim 10^{6}~{rm cm^{-3}}$ and $V_{rm flow} lesssim 60~{rm km~s^{-1}}$, the BH is accelerated forward because of the gravitational pull from a dense shell ahead of an ionized bubble around the BH, regardless of the value of $Z$. If $n_{infty} gtrsim 10^{6}~{rm cm^{-3}}$, however, our simulation shows the opposite result. The ionized bubble and associating shell temporarily appear, but immediately go downstream with significant ram pressure of the flow. They eventually converge into a massive downstream wake, which gravitationally drags the BH backward. The BH decelerates over the timescale of $sim 0.01$~Myr, much shorter than the dynamical timescale in galactic disks. Our results suggest that IMBHs that encounter the dense clouds rapidly migrate toward galactic centers, where they possibly coalescence with others.



قيم البحث

اقرأ أيضاً

We describe ongoing searches for intermediate-mass black holes with M_BH ~ 100-10^5 M_sun. We review a range of search mechanisms, both dynamical and those that rely on accretion signatures. We find that dynamical and accretion signatures alike point to a high fraction of 10^9-10^10 M_sun galaxies hosting black holes with M_BH<10^5 M_sun. In contrast, there are no solid detections of black holes in globular clusters. There are few observational constraints on black holes in any environment with M_BH ~ 100-10^4 M_sun. Considering low-mass galaxies with dynamical black hole masses and constraining limits, we find that the M_BH-sigma_* relation continues unbroken to M_BH~10^5 M_sun, albeit with large scatter. We believe the scatter is at least partially driven by a broad range in black hole mass, since the occupation fraction appears to be relatively high in these galaxies. We fold the observed scaling relations with our empirical limits on occupation fraction and the galaxy mass function to put observational bounds on the black hole mass function in galaxy nuclei. We are pessimistic that local demographic observations of galaxy nuclei alone could constrain seeding mechanisms, although either high-redshift luminosity functions or robust measurements of off-nuclear black holes could begin to discriminate models.
We investigate dynamical self-friction, the process by which material that is stripped from a subhalo torques its remaining bound remnant, which causes it to lose orbital angular momentum. By running idealized simulations of a subhalo orbiting within an analytical host halo potential, we isolate the effect of self-friction from traditional dynamical friction due to the host halo. While at some points in a subhalos orbit the torque of the stripped material can boost the orbital angular momentum of the remnant, the net effect over the long term is orbital decay regardless of the initial orbital parameters or subhalo mass. In order to quantify the strength of self-friction, we run a suite of simulations spanning typical host-to-subhalo mass ratios and orbital parameters. We find that the time-scale for self-friction, defined as the exponential decay time of the subhalos orbital angular momentum, scales with mass ratio and orbital circularity similar to standard dynamical friction. The decay time due to self-friction is roughly an order of magnitude longer, suggesting that self-friction only contributes at the 10 percent level. However, along more radial orbits, self-friction can occasionally dominate over dynamical friction close to pericentric passage, where mass stripping is intense. This is also the epoch at which the self-friction torque undergoes large and rapid changes in both magnitude and direction, indicating that self-friction is an important process to consider when modeling pericentric passages of subhaloes and their associated satellite galaxies.
158 - L. Ciotti 2009
The importance of the radiative feedback from SMBHs at the centers of elliptical galaxies is not in doubt, given the well established relations among electromagnetic output, black hole mass and galaxy optical luminosity. In addition, feedback due to mechanical and thermal deposition of energy from jets and winds emitted by the accretion disk around the central SMBH is also expected to occur. In this paper we improve and extend the accretion and feedback physics explored in our previous papers to include also a physically motivated mechanical feedback. We study the evolution of an isolated elliptical galaxy with the aid of a high-resolution 1-D hydrodynamical code, where the cooling and heating functions include photoionization and Compton effects, and restricting to models which include only radiative or only mechanical feedback. We confirm that for Eddington ratios above 0.01 both the accretion and radiative output are forced by feedback effects to be in burst mode, so that strong intermittencies are expected at early times, while at low redshift the explored models are characterized by smooth, very sub-Eddington mass accretion rates punctuated by rare outbursts. However, the explored models always fail some observational tests. If we assume the high mechanical efficiency of 10^{-2.3}, we find that most of the gas is ejected from the galaxy, the resulting X-ray luminosity is far less than is typically observed and little SMBH growth occurs. But models with low enough mechanical efficiency to accomodate satisfactory SMBH growth tend to allow too strong cooling flows and leave galaxies at z=0 with E+A spectra more frequently than is observed. We conclude that both types of feedback are required. Models with combined feedback are explored in a forthcoming paper [abridged]
For a sample of nine Galactic globular clusters we measured the inner kinematic profiles with integral-field spectroscopy that we combined with existing outer kinematic measurements and HST luminosity profiles. With this information we are able to de tect the crucial rise in the velocity-dispersion profile which indicates the presence of a central black hole. In addition, N-body simulations compared to our data will give us a deeper insight in the properties of clusters with black holes and stronger selection criteria for further studies. For the first time, we obtain a homogeneous sample of globular cluster integral- field spectroscopy which allows a direct comparison between clusters with and without an intermediate-mass black hole.
63 - Mar Mezcua 2017
Intermediate-mass black holes (IMBHs), with masses in the range $100-10^{6}$ M$_{odot}$, are the link between stellar-mass BHs and supermassive BHs (SMBHs). They are thought to be the seeds from which SMBHs grow, which would explain the existence of quasars with BH masses of up to 10$^{10}$ M$_{odot}$ when the Universe was only 0.8 Gyr old. The detection and study of IMBHs has thus strong implications for understanding how SMBHs form and grow, which is ultimately linked to galaxy formation and growth, as well as for studies of the universality of BH accretion or the epoch of reionisation. Proving the existence of seed BHs in the early Universe is not yet feasible with the current instrumentation; however, those seeds that did not grow into SMBHs can be found as IMBHs in the nearby Universe. In this review I summarize the different scenarios proposed for the formation of IMBHs and gather all the observational evidence for the few hundreds of nearby IMBH candidates found in dwarf galaxies, globular clusters, and ultraluminous X-ray sources, as well as the possible discovery of a few seed BHs at high redshift. I discuss some of their properties, such as X-ray weakness and location in the BH mass scaling relations, and the possibility to discover IMBHs through high velocity clouds, tidal disruption events, gravitational waves, or accretion disks in active galactic nuclei. I finalize with the prospects for the detection of IMBHs with up-coming observatories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا