ﻻ يوجد ملخص باللغة العربية
We investigate dynamical self-friction, the process by which material that is stripped from a subhalo torques its remaining bound remnant, which causes it to lose orbital angular momentum. By running idealized simulations of a subhalo orbiting within an analytical host halo potential, we isolate the effect of self-friction from traditional dynamical friction due to the host halo. While at some points in a subhalos orbit the torque of the stripped material can boost the orbital angular momentum of the remnant, the net effect over the long term is orbital decay regardless of the initial orbital parameters or subhalo mass. In order to quantify the strength of self-friction, we run a suite of simulations spanning typical host-to-subhalo mass ratios and orbital parameters. We find that the time-scale for self-friction, defined as the exponential decay time of the subhalos orbital angular momentum, scales with mass ratio and orbital circularity similar to standard dynamical friction. The decay time due to self-friction is roughly an order of magnitude longer, suggesting that self-friction only contributes at the 10 percent level. However, along more radial orbits, self-friction can occasionally dominate over dynamical friction close to pericentric passage, where mass stripping is intense. This is also the epoch at which the self-friction torque undergoes large and rapid changes in both magnitude and direction, indicating that self-friction is an important process to consider when modeling pericentric passages of subhaloes and their associated satellite galaxies.
We investigate how structural relaxation in mixtures with strong dynamical asymmetry is affected by the microscopic dynamics. Brownian and Newtonian dynamics simulations of dense mixtures of fast and slow hard spheres reveal a striking trend reversal
Coalescence of intermediate-mass black holes (IMBHs) as a result of the migration toward galactic centers via dynamical friction may contribute to the formation of supermassive BHs. Here we reinvestigate the gaseous dynamical friction, which was clai
We consider models of growing multi-level systems wherein the growth process is driven by rules of tournament selection. A system can be conceived as an evolving tree with a new node being attached to a contestant node at the best hierarchy level (a
Dynamical friction is typically regarded a secular process, in which the subject (perturber) evolves very slowly (secular approximation), and has been introduced to the host over a long time (adiabatic approximation). These assumptions imply that dyn
We study quantum many-body systems with a global U(1) conservation law, focusing on a theory of $N$ interacting fermions with charge conservation, or $N$ interacting spins with one conserved component of total spin. We define an effective operator si