ﻻ يوجد ملخص باللغة العربية
The importance of the radiative feedback from SMBHs at the centers of elliptical galaxies is not in doubt, given the well established relations among electromagnetic output, black hole mass and galaxy optical luminosity. In addition, feedback due to mechanical and thermal deposition of energy from jets and winds emitted by the accretion disk around the central SMBH is also expected to occur. In this paper we improve and extend the accretion and feedback physics explored in our previous papers to include also a physically motivated mechanical feedback. We study the evolution of an isolated elliptical galaxy with the aid of a high-resolution 1-D hydrodynamical code, where the cooling and heating functions include photoionization and Compton effects, and restricting to models which include only radiative or only mechanical feedback. We confirm that for Eddington ratios above 0.01 both the accretion and radiative output are forced by feedback effects to be in burst mode, so that strong intermittencies are expected at early times, while at low redshift the explored models are characterized by smooth, very sub-Eddington mass accretion rates punctuated by rare outbursts. However, the explored models always fail some observational tests. If we assume the high mechanical efficiency of 10^{-2.3}, we find that most of the gas is ejected from the galaxy, the resulting X-ray luminosity is far less than is typically observed and little SMBH growth occurs. But models with low enough mechanical efficiency to accomodate satisfactory SMBH growth tend to allow too strong cooling flows and leave galaxies at z=0 with E+A spectra more frequently than is observed. We conclude that both types of feedback are required. Models with combined feedback are explored in a forthcoming paper [abridged]
We find, from high-resolution hydro simulations, that winds from AGN effectively heat the inner parts (~100 pc) of elliptical galaxies, reducing infall to the central SMBH; and radiative (photoionization and X-ray) heating reduces cooling flows at th
By using high-resolution 1D hydrodynamical simulations, we investigate the effects of purely mechanical feedback from super massive black holes (SMBHs) in the evolution of elliptical galaxies for a broad range of feedback efficiencies and compare the
We study the effect of AGN mechanical and radiation feedback on the formation of bulge dominated galaxies via mergers of disc galaxies. The merging galaxies have mass-ratios of 1:1 to 6:1 and include pre-existing hot gaseous halos to properly account
We examine unresolved nuclear X-ray sources in 57 brightest cluster galaxies to study the relationship between nuclear X-ray emission and accretion onto supermassive black holes (SMBHs). The majority of the clusters in our sample have prominent X-ray
Coalescence of intermediate-mass black holes (IMBHs) as a result of the migration toward galactic centers via dynamical friction may contribute to the formation of supermassive BHs. Here we reinvestigate the gaseous dynamical friction, which was clai