ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum dynamics in strongly driven random dipolar magnets

210   0   0.0 ( 0 )
 نشر من قبل Michael Buchhold
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The random dipolar magnet LiHo$_x$Y$_{1-x}$F$_4$ enters a strongly frustrated regime for small Ho$^{3+}$ concentrations with $x<0.05$. In this regime, the magnetic moments of the Ho$^{3+}$ ions experience small quantum corrections to the common Ising approximation of LiHo$_x$Y$_{1-x}$F$_4$, which lead to a $Z_2$-symmetry breaking and small, degeneracy breaking energy shifts between different eigenstates. Here we show that destructive interference between two almost degenerate excitation pathways burns spectral holes in the magnetic susceptibility of strongly driven magnetic moments in LiHo$_x$Y$_{1-x}$F$_4$. Such spectral holes in the susceptibility, microscopically described in terms of Fano resonances, can already occur in setups of only two or three frustrated moments, for which the driven level scheme has the paradigmatic $Lambda$-shape. For larger clusters of magnetic moments, the corresponding level schemes separate into almost isolated many-body $Lambda$-schemes, in the sense that either the transition matrix elements between them are negligibly small or the energy difference of the transitions is strongly off-resonant to the drive. This enables the observation of Fano resonances, caused by many-body quantum corrections to the common Ising approximation also in the thermodynamic limit. We discuss its dependence on the driving strength and frequency as well as the crucial role that is played by lattice dissipation.



قيم البحث

اقرأ أيضاً

We study nonlinear response in quantum spin systems {near infinite-randomness critical points}. Nonlinear dynamical probes, such as two-dimensional (2D) coherent spectroscopy, can diagnose the nearly localized character of excitations in such systems . {We present exact results for nonlinear response in the 1D random transverse-field Ising model, from which we extract information about critical behavior that is absent in linear response. Our analysis yields exact scaling forms for the distribution functions of relaxation times that result from realistic channels for dissipation in random magnets}. We argue that our results capture the scaling of relaxation times and nonlinear response in generic random quantum magnets in any spatial dimension.
We study the kinetics of domain growth in ferromagnets with random exchange interactions. We present detailed Monte Carlo results for the nonconserved random-bond Ising model, which are consistent with power-law growth with a variable exponent. These results are interpreted in the context of disorder barriers with a logarithmic dependence on the domain size. Further, we clarify the implications of logarithmic barriers for both nonconserved and conserved domain growth.
We consider dipolar excitations propagating via dipole-induced exchange among immobile molecules randomly spaced in a lattice. The character of the propagation is determined by long-range hops (Levy flights). We analyze the eigen-energy spectra and t he multifractal structure of the wavefunctions. In 1D and 2D all states are localized, although in 2D the localization length can be extremely large leading to an effective localization-delocalization crossover in realistic systems. In 3D all eigenstates are extended but not always ergodic, and we identify the energy intervals of ergodic and non-ergodic states. The reduction of the lattice filling induces an ergodic to non-ergodic transition, and the excitations are mostly non-ergodic at low filling.
In one-dimensional electronic systems with strong repulsive interactions, charge excitations propagate much faster than spin excitations. Such systems therefore have an intermediate temperature range [termed the spin-incoherent Luttinger liquid (SILL ) regime] where charge excitations are cold (i.e., have low entropy) whereas spin excitations are hot. We explore the effects of charge-sector disorder in the SILL regime in the absence of external sources of equilibration. We argue that the disorder localizes all charge-sector excitations; however, spin excitations are protected against full localization, and act as a heat bath facilitating charge and energy transport on asymptotically long timescales. The charge, spin, and energy conductivities are widely separated from one another. The dominant carriers of energy are neither charge nor spin excitations, but neutral phonon modes, which undergo an unconventional form of hopping transport that we discuss. We comment on the applicability of these ideas to experiments and numerical simulations.
We analyze the quantum dynamics of periodically driven, disordered systems in the presence of long-range interactions. Focusing on the stability of discrete time crystalline (DTC) order in such systems, we use a perturbative procedure to evaluate its lifetime. For 3D systems with dipolar interactions, we show that the corresponding decay is parametrically slow, implying that robust, long-lived DTC order can be obtained. We further predict a sharp crossover from the stable DTC regime into a regime where DTC order is lost, reminiscent of a phase transition. These results are in good agreement with the recent experiments utilizing a dense, dipolar spin ensemble in diamond [Nature 543, 221-225 (2017)]. They demonstrate the existence of a novel, critical DTC regime that is stabilized not by many-body localization but rather by slow, critical dynamics. Our analysis shows that the DTC response can be used as a sensitive probe of nonequilibrium quantum matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا