ﻻ يوجد ملخص باللغة العربية
We study the kinetics of domain growth in ferromagnets with random exchange interactions. We present detailed Monte Carlo results for the nonconserved random-bond Ising model, which are consistent with power-law growth with a variable exponent. These results are interpreted in the context of disorder barriers with a logarithmic dependence on the domain size. Further, we clarify the implications of logarithmic barriers for both nonconserved and conserved domain growth.
We reconsider the problem of the critical behavior of a three-dimensional $O(m)$ symmetric magnetic system in the presence of random anisotropy disorder with a generic trimodal random axis distribution. By introducing $n$ replicas to average over dis
The random dipolar magnet LiHo$_x$Y$_{1-x}$F$_4$ enters a strongly frustrated regime for small Ho$^{3+}$ concentrations with $x<0.05$. In this regime, the magnetic moments of the Ho$^{3+}$ ions experience small quantum corrections to the common Ising
We investigate thermodynamic phase transitions of the joint presence of spin glass (SG) and random field (RF) using a random graph model that allows us to deal with the quenched disorder. Therefore, the connectivity becomes a controllable parameter i
The fidelity susceptibility measures sensitivity of eigenstates to a change of an external parameter. It has been fruitfully used to pin down quantum phase transitions when applied to ground states (with extensions to thermal states). Here we propose
We study numerically the depinning transition of driven elastic interfaces in a random-periodic medium with localized periodic-correlation peaks in the direction of motion. The analysis of the moving interface geometry reveals the existence of severa