ﻻ يوجد ملخص باللغة العربية
We study nonlinear response in quantum spin systems {near infinite-randomness critical points}. Nonlinear dynamical probes, such as two-dimensional (2D) coherent spectroscopy, can diagnose the nearly localized character of excitations in such systems. {We present exact results for nonlinear response in the 1D random transverse-field Ising model, from which we extract information about critical behavior that is absent in linear response. Our analysis yields exact scaling forms for the distribution functions of relaxation times that result from realistic channels for dissipation in random magnets}. We argue that our results capture the scaling of relaxation times and nonlinear response in generic random quantum magnets in any spatial dimension.
The random dipolar magnet LiHo$_x$Y$_{1-x}$F$_4$ enters a strongly frustrated regime for small Ho$^{3+}$ concentrations with $x<0.05$. In this regime, the magnetic moments of the Ho$^{3+}$ ions experience small quantum corrections to the common Ising
Exponential localization of wavefunctions in lattices, whether in real or synthetic dimensions, is a fundamental wave interference phenomenon. Localization of Bloch-type functions in space-periodic lattice, triggered by spatial disorder, is known as
We study the infinite-temperature properties of an infinite sequence of random quantum spin chains using a real-space renormalization group approach, and demonstrate that they exhibit non-ergodic behavior at strong disorder. The analysis is convenien
We numerically study weak, random, spatial velocity modulation [quenched gravitational disorder (QGD)] in two-dimensional massless Dirac materials. QGD couples to the spatial components of the stress tensor; the gauge-invariant disorder strength is e
We discuss quantum propagation of dipole excitations in two dimensions. This problem differs from the conventional Anderson localization due to existence of long range hops. We found that the critical wavefunctions of the dipoles always exist which m