ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotically exact theory for nonlinear spectroscopy of random quantum magnets

195   0   0.0 ( 0 )
 نشر من قبل Siddharth Parameswaran
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study nonlinear response in quantum spin systems {near infinite-randomness critical points}. Nonlinear dynamical probes, such as two-dimensional (2D) coherent spectroscopy, can diagnose the nearly localized character of excitations in such systems. {We present exact results for nonlinear response in the 1D random transverse-field Ising model, from which we extract information about critical behavior that is absent in linear response. Our analysis yields exact scaling forms for the distribution functions of relaxation times that result from realistic channels for dissipation in random magnets}. We argue that our results capture the scaling of relaxation times and nonlinear response in generic random quantum magnets in any spatial dimension.



قيم البحث

اقرأ أيضاً

The random dipolar magnet LiHo$_x$Y$_{1-x}$F$_4$ enters a strongly frustrated regime for small Ho$^{3+}$ concentrations with $x<0.05$. In this regime, the magnetic moments of the Ho$^{3+}$ ions experience small quantum corrections to the common Ising approximation of LiHo$_x$Y$_{1-x}$F$_4$, which lead to a $Z_2$-symmetry breaking and small, degeneracy breaking energy shifts between different eigenstates. Here we show that destructive interference between two almost degenerate excitation pathways burns spectral holes in the magnetic susceptibility of strongly driven magnetic moments in LiHo$_x$Y$_{1-x}$F$_4$. Such spectral holes in the susceptibility, microscopically described in terms of Fano resonances, can already occur in setups of only two or three frustrated moments, for which the driven level scheme has the paradigmatic $Lambda$-shape. For larger clusters of magnetic moments, the corresponding level schemes separate into almost isolated many-body $Lambda$-schemes, in the sense that either the transition matrix elements between them are negligibly small or the energy difference of the transitions is strongly off-resonant to the drive. This enables the observation of Fano resonances, caused by many-body quantum corrections to the common Ising approximation also in the thermodynamic limit. We discuss its dependence on the driving strength and frequency as well as the crucial role that is played by lattice dissipation.
Exponential localization of wavefunctions in lattices, whether in real or synthetic dimensions, is a fundamental wave interference phenomenon. Localization of Bloch-type functions in space-periodic lattice, triggered by spatial disorder, is known as Anderson localization and arrests diffusion of classical particles in disordered potentials. In time-periodic Floquet lattices, exponential localization in a periodically driven quantum system similarly arrests diffusion of its classically chaotic counterpart in the action-angle space. Here we demonstrate that nonlinear optical response allows for clear detection of the disorder-induced phase transition between delocalized and localized states. The optical signature of the transition is the emergence of symmetry-forbidden even-order harmonics: these harmonics are enabled by Anderson-type localization and arise for sufficiently strong disorder even when the overall charge distribution in the field-free system spatially symmetric. The ratio of even to odd harmonic intensities as a function of disorder maps out the phase transition even when the associated changes in the band structure are negligibly small.
We study the infinite-temperature properties of an infinite sequence of random quantum spin chains using a real-space renormalization group approach, and demonstrate that they exhibit non-ergodic behavior at strong disorder. The analysis is convenien tly implemented in terms of SU(2)$_k$ anyon chains that include the Ising and Potts chains as notable examples. Highly excited eigenstates of these systems exhibit properties usually associated with quantum critical ground states, leading us to dub them quantum critical glasses. We argue that random-bond Heisenberg chains self-thermalize and that the excited-state entanglement crosses over from volume-law to logarithmic scaling at a length scale that diverges in the Heisenberg limit $krightarrowinfty$. The excited state fixed points are generically distinct from their ground state counterparts, and represent novel non-equilibrium critical phases of matter.
We numerically study weak, random, spatial velocity modulation [quenched gravitational disorder (QGD)] in two-dimensional massless Dirac materials. QGD couples to the spatial components of the stress tensor; the gauge-invariant disorder strength is e ncoded in the quenched curvature. Although expected to produce negligible effects, wave interference due to QGD transforms all but the lowest-energy states into a quantum-critical stack with universal, energy-independent spatial fluctuations. We study five variants of velocity disorder, incorporating three different local deformations of the Dirac cone: flattening or steepening of the cone, pseudospin rotations, and nematic deformation (squishing) of the cone. QGD should arise for nodal excitations in the $d$-wave cuprate superconductors (SCs), due to gap inhomogeneity. Our results may explain the division between low-energy coherent (plane-wave-like) and finite-energy incoherent (spatially inhomogeneous) excitations in the SC and pseudogap regimes. The model variant that best matches the cuprate phenomenology possesses quenched random pseudospin rotations and nematic fluctuations. This model variant and another with pure nematic randomness exhibit a robust energy swath of stacked critical states, the width of which increases with increasing disorder strength. By contrast, quenched fluctuations that isotropically flatten or steepen the Dirac cone tend to produce strong disorder effects, with more rarified wave functions at low- and high-energies. Our models also describe the surface states of class DIII topological SCs.
116 - I.L. Aleiner , B.L. Altshuler , 2011
We discuss quantum propagation of dipole excitations in two dimensions. This problem differs from the conventional Anderson localization due to existence of long range hops. We found that the critical wavefunctions of the dipoles always exist which m anifest themselves by a scale independent diffusion constant. If the system is T-invariant the states are critical for all values of the parameters. Otherwise, there can be a metal-insulator transition between this ordinary diffusion and the Levy-flights (the diffusion constant logarithmically increasing with the scale). These results follow from the two-loop analysis of the modified non-linear supermatrix $sigma$-model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا