ﻻ يوجد ملخص باللغة العربية
We consider an anisotropic curvature flow $V= A(mathbf{n})H + B(mathbf{n})$ in a band domain $Omega :=[-1,1]times R$, where $mathbf{n}$, $V$ and $H$ denote the unit normal vector, normal velocity and curvature, respectively, of a graphic curve $Gamma_t$. We consider the case when $A>0>B$ and the curve $Gamma_t$ contacts $partial_pm Omega$ with slopes equaling to $pm 1$ times of its height (which are unbounded when the solution moves to infinity). First, we present the global well-posedness and then, under some symmetric assumptions on $A$ and $B$, we show the uniform interior gradient estimates for the solution. Based on these estimates, we prove that $Gamma_t$ converges as $tto infty$ in $C^{2,1}_{text{loc}} ((-1,1)times R)$ topology to a cup-like traveling wave with {it infinite} derivatives on the boundaries.
We consider a curvature flow $V=H$ in the band domain $Omega :=[-1,1]times R$, where, for a graphic curve $Gamma_t$, $V$ denotes its normal velocity and $H$ denotes its curvature. If $Gamma_t$ contacts the two boundaries $partial_pm Omega$ of $Omega$
We prove global existence of Yamabe flows on non-compact manifolds $M$ of dimension $mgeq3$ under the assumption that the initial metric $g_0=u_0g_M$ is conformally equivalent to a complete background metric $g_M$ of bounded, non-positive scalar curv
In this article we prove a reducibility result for the linear Schrodinger equation on a Zoll manifold with quasi-periodic in time pseudo-differential perturbation of order less or equal than $1/2$. As far as we know, this is the first reducibility re
We consider a class of non-trivial perturbations ${mathscr A}$ of the degenerate Ornstein-Uhlenbeck operator in ${mathbb R}^N$. In fact we perturb both the diffusion and the drift part of the operator (say $Q$ and $B$) allowing the diffusion part to
We prove the existence of unique solutions to the Dirichlet boundary value problems for linear second-order uniformly parabolic operators in either divergence or non-divergence form with boundary blowup low-order coefficients. The domain is possibly