ﻻ يوجد ملخص باللغة العربية
We prove global existence of Yamabe flows on non-compact manifolds $M$ of dimension $mgeq3$ under the assumption that the initial metric $g_0=u_0g_M$ is conformally equivalent to a complete background metric $g_M$ of bounded, non-positive scalar curvature and positive Yamabe invariant with conformal factor $u_0$ bounded from above and below. We do not require initial curvature bounds. In particular, the scalar curvature of $(M,g_0)$ can be unbounded from above and below without growth condition.
In this paper we provide some local and global splitting results on complete Riemannian manifolds with nonnegative Ricci curvature. We achieve the splitting through the analysis of some pointwise inequalities of Modica type which hold true for every
This paper studies the combinatorial Yamabe flow on hyperbolic surfaces with boundary. It is proved by applying a variational principle that the length of boundary components is uniquely determined by the combinatorial conformal factor. The combinato
We consider an anisotropic curvature flow $V= A(mathbf{n})H + B(mathbf{n})$ in a band domain $Omega :=[-1,1]times R$, where $mathbf{n}$, $V$ and $H$ denote the unit normal vector, normal velocity and curvature, respectively, of a graphic curve $Gamma
Alexandrovs theorem asserts that spheres are the only closed embedded constant mean curvature hypersurfaces in space forms. In this paper, we consider Alexandrovs theorem in warped product manifolds and prove a rigidity result in the spirit of Alexan
On Riemannian manifolds of dimension 4, for prescribed scalar curvature equation, under lipschitzian condition on the prescribed curvature, we have an uniform estimate for the solutions of the equation if we control their minimas.