ﻻ يوجد ملخص باللغة العربية
We prove the existence of unique solutions to the Dirichlet boundary value problems for linear second-order uniformly parabolic operators in either divergence or non-divergence form with boundary blowup low-order coefficients. The domain is possibly time varying, non-smooth, and satisfies the exterior measure condition.
We obtain the maximal regularity for the mixed Dirichlet-conormal problem in cylindrical domains with time-dependent separations, which is the first of its kind. The boundary of the domain is assumed to be Reifenberg-flat and the separation is locall
We study the large time behaviour of the solution of linear dispersive partial differential equations posed on a finite interval, when at least one of the prescribed boundary conditions is time periodic. We use the Q equation approach, pioneered in F
This paper considers boundary value problems for a class of singular elliptic operators which appear naturally in the study of asymptotically anti-de Sitter (aAdS) spacetimes. These problems involve a singular Bessel operator acting in the normal dir
In this paper we consider second order parabolic partial differential equations subject to the Dirichlet boundary condition on smooth domains. We establish weighted $L_{q}$-maximal regularity in weighted Triebel-Lizorkin spaces for such parabolic pro
In this paper we develop the global symbolic calculus of pseudo-differential operators generated by a boundary value problem for a given (not necessarily self-adjoint or elliptic) differential operator. For this, we also establish elements of a non-s