ﻻ يوجد ملخص باللغة العربية
Tweet classification has attracted considerable attention recently. Most of the existing work on tweet classification focuses on topic classification, which classifies tweets into several predefined categories, and sentiment classification, which classifies tweets into positive, negative and neutral. Since tweets are different from conventional text in that they generally are of limited length and contain informal, irregular or new words, so it is difficult to determine user intention to publish a tweet and user attitude towards certain topic. In this paper, we aim to simultaneously classify tweet purpose, i.e., the intention for user to publish a tweet, and position, i.e., supporting, opposing or being neutral to a given topic. By transforming this problem to a multi-label classification problem, a multi-label classification method with post-processing is proposed. Experiments on real-world data sets demonstrate the effectiveness of this method and the results outperform the individual classification methods.
Image-text matching tasks have recently attracted a lot of attention in the computer vision field. The key point of this cross-domain problem is how to accurately measure the similarity between the visual and the textual contents, which demands a fin
Authorship identification is a process in which the author of a text is identified. Most known literary texts can easily be attributed to a certain author because they are, for example, signed. Yet sometimes we find unfinished pieces of work or a who
Events detected from social media streams often include early signs of accidents, crimes or disasters. Therefore, they can be used by related parties for timely and efficient response. Although significant progress has been made on event detection fr
The PICO framework (Population, Intervention, Comparison, and Outcome) is usually used to formulate evidence in the medical domain. The major task of PICO extraction is to extract sentences from medical literature and classify them into each class. H
We use over 350,000 Yelp reviews on 5,000 restaurants to perform an ablation study on text preprocessing techniques. We also compare the effectiveness of several machine learning and deep learning models on predicting user sentiment (negative, neutra