ﻻ يوجد ملخص باللغة العربية
We present the Obelisk project, a cosmological radiation-hydrodynamics simulation following the assembly and reionization of a protocluster progenitor during the first two billions of years from the big bang, down to $z = 3.5$. The simulation resolves haloes down to the atomic cooling limit, and tracks the contribution of different sources of ionization: stars, active galactic nuclei, and collisions. The Obelisk project is designed specifically to study the coevolution of high redshift galaxies and quasars in an environment favouring black hole growth. In this paper, we establish the relative contribution of these two sources of radiation to reionization and their respective role in establishing and maintaining the high redshift ionizing background. Our volume is typical of an overdense region of the Universe and displays star formation rate and black hole accretion rate densities similar to high redshift protoclusters. We find that hydrogen reionization happens inside-out and is completed by $z sim 6$ in our overdensity, and is predominantly driven by galaxies, while accreting black holes only play a role at $z sim 4$.
Metal-poor globular clusters (GCs) are both numerous and ancient, which indicates that they may be important contributors to ionizing radiation in the reionization era. Starting from the observed number density and stellar mass function of old GCs at
The HI gas content is a key ingredient in galaxy evolution, the study of which has been limited to moderate cosmological distances for individual galaxies due to the weakness of the hyperfine HI 21-cm transition. Here we present a new approach that a
We use the GALFORM semi-analytical model to study high density regions traced by radio galaxies and quasars at high redshifts. We explore the impact that baryonic physics has upon the properties of galaxies in these environments. Star-forming emissio
We reinvestigate a claimed sample of 22 X-ray detected active galactic nuclei (AGN) at redshifts z > 4, which has reignited the debate as to whether young galaxies or AGN reionized the Universe. These sources lie within the GOODS-S/CANDELS field, and
The study of galaxy protoclusters is beginning to fill in unknown details of the important phase of the assembly of clusters and cluster galaxies. This review describes the current status of this field and highlights promising recent findings related