ﻻ يوجد ملخص باللغة العربية
The HI gas content is a key ingredient in galaxy evolution, the study of which has been limited to moderate cosmological distances for individual galaxies due to the weakness of the hyperfine HI 21-cm transition. Here we present a new approach that allows us to infer the HI gas mass $M_{rm HI}$ of individual galaxies up to $zapprox 6$, based on a direct measurement of the [CII]-to-HI conversion factor in star-forming galaxies at $zgtrsim 2$ using $gamma$-ray burst afterglows. By compiling recent [CII]-158 $mu$m emission line measurements we quantify the evolution of the HI content in galaxies through cosmic time. We find that the HI mass starts to exceed the stellar mass $M_star$ at $zgtrsim 1$, and increases as a function of redshift. The HI fraction of the total baryonic mass increases from around $20%$ at $z = 0$ to about $60%$ at $zsim 6$. We further uncover a universal relation between the HI gas fraction $M_{rm HI}/M_star$ and the gas-phase metallicity, which seems to hold from $zapprox 6$ to $z=0$. The majority of galaxies at $z>2$ are observed to have HI depletion times, $t_{rm dep,HI} = M_{rm HI}/{rm SFR}$, less than $approx 2$ Gyr, substantially shorter than for $zsim 0$ galaxies. Finally, we use the [CII]-to-HI conversion factor to determine the cosmic mass density of HI in galaxies, $rho_{rm HI}$, at three distinct epochs: $zapprox 0$, $zapprox 2$, and $zsim 4-6$. These measurements are consistent with previous estimates based on 21-cm HI observations in the local Universe and with damped Lyman-$alpha$ absorbers (DLAs) at $zgtrsim 2$, suggesting an overall decrease by a factor of $approx 5$ in $rho_{rm HI}(z)$ from the end of the reionization epoch to the present.
We present new results on [CII]158$mu$ m emission from four galaxies in the reionization epoch. These galaxies were previously confirmed to be at redshifts between 6.6 and 7.15 from the presence of the Ly$alpha$ emission line in their spectra. The Ly
Recent observations of galaxies at $z gtrsim 7$, along with the low value of the electron scattering optical depth measured by the Planck mission, make galaxies plausible as dominant sources of ionizing photons during the epoch of reionization. Howev
The neutral hydrogen (HI) and its 21 cm line are promising probes to the reionization process of the intergalactic medium (IGM). To use this probe effectively, it is imperative to have a good understanding on how the neutral hydrogen traces the under
The detection of the Epoch of Reionization (EoR) in the redshifted 21-cm line is a challenging task. Here we formulate the detection of the EoR signal using the drift scan strategy. This method potentially has better instrumental stability as compare
We present the Obelisk project, a cosmological radiation-hydrodynamics simulation following the assembly and reionization of a protocluster progenitor during the first two billions of years from the big bang, down to $z = 3.5$. The simulation resolve