ترغب بنشر مسار تعليمي؟ اضغط هنا

No evidence for a significant AGN contribution to cosmic hydrogen reionization

98   0   0.0 ( 0 )
 نشر من قبل James Dunlop
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We reinvestigate a claimed sample of 22 X-ray detected active galactic nuclei (AGN) at redshifts z > 4, which has reignited the debate as to whether young galaxies or AGN reionized the Universe. These sources lie within the GOODS-S/CANDELS field, and we examine both the robustness of the claimed X-ray detections (within the Chandra 4Ms imaging) and perform an independent analysis of the photometric redshifts of the optical/infrared counterparts. We confirm the reality of only 15 of the 22 reported X-ray detections, and moreover find that only 12 of the 22 optical/infrared counterpart galaxies actually lie robustly at z > 4. Combining these results we find convincing evidence for only 7 X-ray AGN at z > 4 in the GOODS-S field, of which only one lies at z > 5. We recalculate the evolving far-UV (1500 Angstrom) luminosity density produced by AGN at high redshift, and find that it declines rapidly from z = 4 to z = 6, in agreement with several other recent studies of the evolving AGN luminosity function. The associated rapid decline in inferred hydrogen-ionizing emissivity contributed by AGN falls an order-of-magnitude short of the level required to maintain hydrogen ionization at z ~ 6. We conclude that all available evidence continues to favour a scenario in which young galaxies reionized the Universe, with AGN making, at most, a very minor contribution to cosmic hydrogen reionization.



قيم البحث

اقرأ أيضاً

78 - Xiangcheng Ma 2020
We study the escape fraction of ionizing photons (f_esc) in two cosmological zoom-in simulations of galaxies in the reionization era with halo mass M_halo~10^10 and 10^11 M_sun (stellar mass M*~10^7 and 10^9 M_sun) at z=5 from the Feedback in Realist ic Environments project. These simulations explicitly resolve the formation of proto-globular clusters (GCs) self-consistently, where 17-39% of stars form in bound clusters during starbursts. Using post-processing Monte Carlo radiative transfer calculations of ionizing radiation, we compute f_esc from cluster stars and non-cluster stars formed during a starburst over ~100 Myr in each galaxy. We find that the averaged f_esc over the lifetime of a star particle follows a similar distribution for cluster stars and non-cluster stars. Clusters tend to have low f_esc in the first few Myrs, presumably because they form preferentially in more extreme environments with high optical depths; the f_esc increases later as feedback starts to disrupt the natal cloud. On the other hand, non-cluster stars formed between cluster complexes or in the compressed shell at the front of a superbubble can also have high f_esc. We find that cluster stars on average have comparable f_esc to non-cluster stars. This result is robust across several star formation models in our simulations. Our results suggest that the fraction of ionizing photons from proto-GCs to cosmic reionization is comparable to the cluster formation efficiency in high-redshift galaxies and hence proto-GCs likely contribute an appreciable fraction of photons but are not the dominant sources for reionization.
Recent discoveries have put the picture of stellar clusters being simple stellar populations into question. In particular, the color-magnitude diagrams of intermediate age (1-2 Gyr) massive clusters in the Large Magellanic Cloud (LMC) show features t hat could be interpreted as age spreads of 100-500 Myr. If multiple generations of stars are present in these clusters then, as a consequence, young (<1 Gyr) clusters with similar properties should have age spreads of the same order. In this paper we use archival Hubble Space Telescope (HST) data of eight young massive LMC clusters (NGC 1831, NGC 1847, NGC 1850, NGC 2004, NGC 2100, NGC 2136, NGC 2157 and NGC 2249) to test this hypothesis. We analyzed the color-magnitude diagrams of these clusters and fitted their star formation history to derive upper limits of potential age spreads. We find that none of the clusters analyzed in this work shows evidence for an extended star formation history that would be consistent with the age spreads proposed for intermediate age LMC clusters. Tests with artificial single age clusters show that the fitted age dispersion of the youngest clusters is consistent with spreads that are purely induced by photometric errors. As an additional result we determined a new age of NGC 1850 of ~100 Myr, significantly higher than the commonly used value of about 30 Myr, although consistent with early HST estimates.
122 - Richard de Grijs 2013
Whether or not the rich star cluster population in the Large Magellanic Cloud (LMC) is affected by significant disruption during the first few x 10^8 yr of its evolution is an open question and the subject of significant current debate. Here, we revi sit the problem, adopting a homogeneous data set of broad-band imaging observations. We base our analysis mainly on two sets of self-consistently determined LMC cluster ages and masses, one using standard modelling and one which takes into account the effects of stochasticity in the clusters stellar mass functions. On their own, the results based on any of the three complementary analysis approaches applied here are merely indicative of the physical conditions governing the cluster population. However, the combination of our results from all three different diagnostics leaves little room for any conclusion other than that the optically selected LMC star cluster population exhibits no compelling evidence of significant disruption -- for clusters with masses, M_cl, of log(M_cl/M_sun) >= 3.0-3.5 -- between the age ranges of [3-10] Myr and [30-100] Myr, either infant mortality or otherwise. In fact, there is no evidence of any destruction beyond that expected from simple models just including stellar dynamics and stellar evolution for ages up to 1 Gyr. It seems, therefore, that the difference in environmental conditions in the Magellanic Clouds on the one hand and significantly more massive galaxies on the other may be the key to understanding the apparent variations in cluster disruption behaviour at early times.
The cosmic history of supermassive black hole (SMBH) growth is important for understanding galaxy evolution, reionization and the physics of accretion. Recent NuSTAR, Swift-BAT and textit{Chandra} hard X-ray surveys have provided new constraints on t he space density of heavily obscured Active Galactic Nuclei (AGN). Using the new X-ray luminosity function derived from these data, we here estimate the accretion efficiency of SMBHs and their contribution to reionization. We calculate the total ionizing radiation from active galactic nuclei (AGN) as a function of redshift, based on the X radiation and distribution of obscuring column density, converted to UV wavelengths. Limiting the luminosity function to unobscured AGN only, our results agree with current UV luminosity functions of unobscured AGN. For realistic assumptions about the escape fraction, the contribution of all AGN to cosmic reionization is $sim4$ times lower than the galaxy contribution (23% at $zsim6$). Our results also offer an observationally constrained prescription that can be used in simulations or models of galaxy evolution. To estimate the average efficiency with which supermassive black holes convert mass to light, we compare the total radiated energy, converted from X-ray light using a bolometric correction, to the most recent local black hole mass density. The most likely value, $eta sim 0.3-0.34$, approaches the theoretical limit for a maximally rotating Kerr black hole, $eta=0.42$, implying that on average growing supermassive black holes are spinning rapidly.
Supernova (SN) cosmology is based on the assumption that the corrected luminosity of SN Ia would not evolve with redshift. Recently, our age dating of stellar populations in early-type host galaxies (ETGs) from high-quality spectra has shown that thi s key assumption is most likely in error. It has been argued though that the age-Hubble residual (HR) correlation from ETGs is not confirmed from two independent age datasets measured from multi-band optical photometry of host galaxies of all morphological types. Here we show, however, that one of them is based on highly uncertain and inappropriate luminosity-weighted ages derived, in many cases, under serious template mismatch. The other dataset employs more reliable mass-weighted ages, but the statistical analysis involved is affected by regression dilution bias, severely underestimating both the slope and significance of the age-HR correlation. Remarkably, when we apply regression analysis with a standard posterior sampling method to this dataset comprising a large sample ($N=102$) of host galaxies, very significant ($> 99.99 %$) correlation is obtained between the global population age and HR with the slope ($-0.047 pm 0.011$~mag/Gyr) highly consistent with our previous spectroscopic result from ETGs. For the local age of the environment around the site of SN, a similarly significant ($> 99.96 %$) correlation is obtained with a steeper slope ($-0.057 pm 0.016$ mag/Gyr). Therefore, the SN luminosity evolution is strongly supported by the age dating based on multi-band optical photometry and can be a serious systematic bias in SN cosmology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا