ﻻ يوجد ملخص باللغة العربية
A pair of non-adjacent edges is said to be separated in a circular ordering of vertices, if the endpoints of the two edges do not alternate in the ordering. The circular separation dimension of a graph $G$, denoted by $pi^circ(G)$, is the minimum number of circular orderings of the vertices of $G$ such that every pair of non-adjacent edges is separated in at least one of the circular orderings. This notion is introduced by Loeb and West in their recent paper. In this article, we consider two subclasses of planar graphs, namely $2$-outerplanar graphs and series-parallel graphs. A $2$-outerplanar graph has a planar embedding such that the subgraph obtained by removal of the vertices of the exterior face is outerplanar. We prove that if $G$ is $2$-outerplanar then $pi^circ(G) = 2$. We also prove that if $G$ is a series-parallel graph then $pi^circ(G) leq 2$.
A circular-arc graph is the intersection graph of arcs of a circle. It is a well-studied graph model with numerous natural applications. A certifying algorithm is an algorithm that outputs a certificate, along with its answer (be it positive or negat
We show that the asymptotic dimension of a geodesic space that is homeomorphic to a subset in the plane is at most three. In particular, the asymptotic dimension of the plane and any planar graph is at most three.
In this short note, we show two NP-completeness results regarding the emph{simultaneous representation problem}, introduced by Lubiw and Jampani. The simultaneous representation problem for a given class of intersection graphs asks if some $k$ graphs
A graph where each vertex $v$ has a list $L(v)$ of available colors is $L$-colorable if there is a proper coloring such that the color of $v$ is in $L(v)$ for each $v$. A graph is $k$-choosable if every assignment $L$ of at least $k$ colors to each v
A graph is NIC-planar if it admits a drawing in the plane with at most one crossing per edge and such that two pairs of crossing edges share at most one common end vertex. NIC-planarity generalizes IC-planarity, which allows a vertex to be incident t