ترغب بنشر مسار تعليمي؟ اضغط هنا

Laurent series of holomorphic functions smooth up to the boundary

143   0   0.0 ( 0 )
 نشر من قبل Anirban Dawn
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Anirban Dawn




اسأل ChatGPT حول البحث

It is shown that the Laurent series of a holomorphic function smooth up to the boundary on a Reinhardt domain in $mathbb{C}^n$ converges unconditionally to the function in the Fr{e}chet topology of the space of functions smooth up to the boundary.



قيم البحث

اقرأ أيضاً

102 - Matt Hohertz 2021
Kalantaris Geometric Modulus Principle describes the local behavior of the modulus of a polynomial. Specifically, if $p(z) = a_0 + sum_{j=k}^n a_jleft(z-z_0right)^j,;a_0a_ka_n eq 0$, then the complex plane near $z = z_0$ comprises $2k$ sectors of an gle $frac{pi}{k}$, alternating between arguments of ascent (angles $theta$ where $|p(z_0 + te^{itheta})| > |p(z_0)|$ for small $t$) and arguments of descent (where the opposite inequality holds). In this paper, we generalize the Geometric Modulus Principle to holomorphic and harmonic functions. As in Kalantaris original paper, we use these extensions to give succinct, elegant new proofs of some classical theorems from analysis.
We prove a theorem on separation of boundary null points for generators of continuous semigroups of holomorphic self-mappings of the unit disk in the complex plane. Our construction demonstrates the existence and importance of a particular role of th e binary operation $circ$ given by $1 / f circ g = 1/f + 1/g$ on generators.
175 - Mark Elin , David Shoikhet 2011
In this paper we give some quantative characteristics of boundary asymptotic behavior of semigroups of holomorphic self-mappings of the unit disk including the limit curvature of their trajectories at the boundary Denjoy--Wolff point. This enable us to establish an asymptotic rigidity property for semigroups of parabolic type.
83 - Qian Guan 2018
In this note, we answer a question on the extension of $L^{2}$ holomorphic functions posed by Ohsawa.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا