ترغب بنشر مسار تعليمي؟ اضغط هنا

Separation of Boundary Singularities for Holomorphic Generators

255   0   0.0 ( 0 )
 نشر من قبل Mark Elin
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove a theorem on separation of boundary null points for generators of continuous semigroups of holomorphic self-mappings of the unit disk in the complex plane. Our construction demonstrates the existence and importance of a particular role of the binary operation $circ$ given by $1 / f circ g = 1/f + 1/g$ on generators.



قيم البحث

اقرأ أيضاً

Let $f$ be the infinitesimal generator of a one-parameter semigroup $left{ F_{t}right} _{tge0}$ of holomorphic self-mappings of the open unit disk $Delta$. In this paper we study properties of the family $R$ of resolvents $(I+rf)^{-1}:DeltatoDelta~ ( rge0)$ in the spirit of geometric function theory. We discovered, in particular, that $R$ forms an inverse Lowner chain of hyperbolically convex functions. Moreover, each element of $R$ satisfies the Noshiro-Warschawski condition and is a starlike function of order at least $frac12$,. This, in turn, implies that each element of $R$ is also a holomorphic generator. We mention also quasiconformal extension of an element of $R.$ Finally we study the existence of repelling fixed points of this family.
We present a rigidity property of holomorphic generators on the open unit ball $mathbb{B}$ of a Hilbert space $H$. Namely, if $finHol (mathbb{B},H)$ is the generator of a one-parameter continuous semigroup ${F_t}_{tgeq 0}$ on $mathbb{B}$ such that fo r some boundary point $tauin partialmathbb{B}$, the admissible limit $K$-$limlimits_{ztotau}frac{f(x)}{|x-tau|^{3}}=0$, then $f$ vanishes identically on $mathbb{B}$.
153 - Xieping Wang , Guangbin Ren 2015
In this paper, we generalize a recent work of Liu et al. from the open unit ball $mathbb B^n$ to more general bounded strongly pseudoconvex domains with $C^2$ boundary. It turns out that part of the main result in this paper is in some certain sense just a part of results in a work of Bracci and Zaitsev. However, the proofs are significantly different: the argument in this paper involves a simple growth estimate for the Caratheodory metric near the boundary of $C^2$ domains and the well-known Grahams estimate on the boundary behavior of the Caratheodory metric on strongly pseudoconvex domains, while Bracci and Zaitsev use other arguments.
182 - Mark Elin , David Shoikhet 2011
In this paper we give some quantative characteristics of boundary asymptotic behavior of semigroups of holomorphic self-mappings of the unit disk including the limit curvature of their trajectories at the boundary Denjoy--Wolff point. This enable us to establish an asymptotic rigidity property for semigroups of parabolic type.
We study infinitesimal generators of one-parameter semigroups in the unit disk $mathbb D$ having prescribed boundary regular fixed points. Using an explicit representation of such infinitesimal generators in combination with Krein-Milman Theory we ob tain new sharp inequalities relating spectral values at the fixed points with other important quantities having dynamical meaning.vWe also give a new proof of the classical Cowen-Pommerenke inequalities for univalent self-maps of $mathbb D$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا