ترغب بنشر مسار تعليمي؟ اضغط هنا

An extension of the Geometric Modulus Principle to holomorphic and harmonic functions

103   0   0.0 ( 0 )
 نشر من قبل Matt Hohertz
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Matt Hohertz




اسأل ChatGPT حول البحث

Kalantaris Geometric Modulus Principle describes the local behavior of the modulus of a polynomial. Specifically, if $p(z) = a_0 + sum_{j=k}^n a_jleft(z-z_0right)^j,;a_0a_ka_n eq 0$, then the complex plane near $z = z_0$ comprises $2k$ sectors of angle $frac{pi}{k}$, alternating between arguments of ascent (angles $theta$ where $|p(z_0 + te^{itheta})| > |p(z_0)|$ for small $t$) and arguments of descent (where the opposite inequality holds). In this paper, we generalize the Geometric Modulus Principle to holomorphic and harmonic functions. As in Kalantaris original paper, we use these extensions to give succinct, elegant new proofs of some classical theorems from analysis.



قيم البحث

اقرأ أيضاً

83 - Qian Guan 2018
In this note, we answer a question on the extension of $L^{2}$ holomorphic functions posed by Ohsawa.
The numerical range of holomorphic mappings arises in many aspects of nonlinear analysis, finite and infinite dimensional holomorphy, and complex dynamical systems. In particular, this notion plays a crucial role in establishing exponential and produ ct formulas for semigroups of holomorphic mappings, the study of flow invariance and range conditions, geometric function theory in finite and infinite dimensional Banach spaces, and in the study of complete and semi-complete vector fields and their applications to starlike and spirallike mappings, and to Bloch (univalence) radii for locally biholomorphic mappings. In the present paper we establish lower and upper bounds for the numerical range of holomorphic mappings in Banach spaces. In addition, we study and discuss some geometric and quantitative analytic aspects of fixed point theory, nonlinear resolvents of holomorphic mappings, Bloch radii, as well as radii of starlikeness and spirallikeness.
142 - Anirban Dawn 2020
It is shown that the Laurent series of a holomorphic function smooth up to the boundary on a Reinhardt domain in $mathbb{C}^n$ converges unconditionally to the function in the Fr{e}chet topology of the space of functions smooth up to the boundary.
157 - Ronald G. Douglas , Yi Wang 2015
In this paper we introduce techniques from complex harmonic analysis to prove a weaker version of the Geometric Arveson-Douglas Conjecture for complex analytic subsets that is smooth on the boundary of the unit ball and intersects transversally with it. In fact, we prove that the projection operator onto the corresponding quotient module is in the Toeplitz algebra $mathcal{T}(L^{infty})$, which implies the essential normality of the quotient module. Combining some other techniques we actually obtain the $p$-essential normality for $p>2d$, where $d$ is the complex dimension of the analytic subset. Finally, we show that our results apply for the closure of a radical polynomial ideal $I$ whose zero variety satisfies the above conditions. A key technique is defining a right inverse operator of the restriction map from the unit ball to the analytic subset generalizing the result of Beatrouss paper $L^p$-estimates for extensions of holomorphic functions.
Harmonic functions are natural generalizations of conformal mappings. In recent years, a lot of work have been done by some researchers who focus on harmonic starlike functions. In this paper, we aim to introduce two classes of harmonic univalent fun ctions of the unit disk, called hereditarily $lambda$-spirallike functions and hereditarily strongly starlike functions, which are the generalizations of $lambda$-spirallike functions and strongly starlike functions, respectively. We note that a relation can be obtained between this two classes. We also investigate analytic characterization of hereditarily spirallike functions and uniform boundedness of hereditarily strongly starlike functions. Some coefficient conditions are given for hereditary strong starlikeness and hereditary spirallikeness. As a simple application, we consider a special form of harmonic functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا