ﻻ يوجد ملخص باللغة العربية
Knowledge Distillation, as a model compression technique, has received great attention. The knowledge of a well-performed teacher is distilled to a student with a small architecture. The architecture of the small student is often chosen to be similar to their teachers, with fewer layers or fewer channels, or both. However, even with the same number of FLOPs or parameters, the students with different architecture can achieve different generalization ability. The configuration of a student architecture requires intensive network architecture engineering. In this work, instead of designing a good student architecture manually, we propose to search for the optimal student automatically. Based on L1-norm optimization, a subgraph from the teacher network topology graph is selected as a student, the goal of which is to minimize the KL-divergence between students and teachers outputs. We verify the proposal on CIFAR10 and CIFAR100 datasets. The empirical experiments show that the learned student architecture achieves better performance than ones specified manually. We also visualize and understand the architecture of the found student.
In recent years, Siamese network based trackers have significantly advanced the state-of-the-art in real-time tracking. However, state-of-the-art Siamese trackers suffer from high memory cost which restricts their applicability in mobile applications
Facial landmark detection aims to localize the anatomically defined points of human faces. In this paper, we study facial landmark detection from partially labeled facial images. A typical approach is to (1) train a detector on the labeled images; (2
Whole understanding of the surroundings is paramount to autonomous systems. Recent works have shown that deep neural networks can learn geometry (depth) and motion (optical flow) from a monocular video without any explicit supervision from ground tru
This paper shows that when applying machine learning to digital zoom for photography, it is beneficial to use real, RAW sensor data for training. Existing learning-based super-resolution methods do not use real sensor data, instead operating on RGB i
Traditionally, distillation has been used to train a student model to emulate the input/output functionality of a teacher. A more useful goal than emulation, yet under-explored, is for the student to learn feature representations that transfer well t